- -

Some classes of topological spaces related to zero-sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some classes of topological spaces related to zero-sets

Mostrar el registro completo del ítem

Golrizkhatami, F.; Taherifar, A. (2022). Some classes of topological spaces related to zero-sets. Applied General Topology. 23(1):1-16. https://doi.org/10.4995/agt.2022.15668

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182878

Ficheros en el ítem

Metadatos del ítem

Título: Some classes of topological spaces related to zero-sets
Autor: Golrizkhatami, F. Taherifar, Ali
Fecha difusión:
Resumen:
[EN] An almost P-space is a topological space in which every zero-set is regular-closed. We introduce a large class of spaces, C-almost P-space (briefly CAP-space), consisting of those spaces in which the closure of the ...[+]
Palabras clave: Zero-set , Almost P-space , Compact space , Z-embedded subset
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15668
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15668
Tipo: Artículo

References

F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. 1 (2000), 121-132.

F. Azarpanah, M. Ghirati and A. Taherifar, Closed ideals in C(X) with different reperesentations, Houston Journal of Mathematics 44, no. 1 (2018), 363-383.

F. Azarpanah, A. A. Hesari, A. R. Salehi and A. Taherifar, A Lindelöfication, Topology Appl. 245 (2018), l46-61. [+]
F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. 1 (2000), 121-132.

F. Azarpanah, M. Ghirati and A. Taherifar, Closed ideals in C(X) with different reperesentations, Houston Journal of Mathematics 44, no. 1 (2018), 363-383.

F. Azarpanah, A. A. Hesari, A. R. Salehi and A. Taherifar, A Lindelöfication, Topology Appl. 245 (2018), l46-61.

https://doi.org/10.1016/j.topol.2018.06.009

F. Azarpanah and M. Karavan, On nonregular ideals and $z^o$-ideals in C(X), Czechoslovak Math. J. 55 (2005), 397-407.

https://doi.org/10.1007/s10587-005-0030-0

F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, On z-ideals in C(X), Fund. Math. 160 (1999), 15-25.

https://doi.org/10.4064/fm_1999_160_1_1_15_25

R. L. Blair and A. W. Hager, Extension of zero-sets and real-valued functions, Math. Z. 136 (1974), 41-52.

https://doi.org/10.1007/BF01189255

F. Dashiel, A. Hager and M. Henriksen, Order-Cauchy completions and vector lattices of continuous functions, Canad. J. Math. XXXII (1980), 657-685.

https://doi.org/10.4153/CJM-1980-052-0

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.

M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130.

https://doi.org/10.1090/S0002-9947-1965-0194880-9

M. Henriksen and G. Woods, Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact, Topology Appl. 141 (2004), 147-170.

https://doi.org/10.1016/j.topol.2003.12.004

R. Levy, Almost P-spaces, Canad. J. Math. 2 (1977), 284-288.

https://doi.org/10.4153/CJM-1977-030-7

A. Taherifar, Some new classes of topological spaces and annihilator ideals, Topology Appl. 165 (2014), 84-97.

https://doi.org/10.1016/j.topol.2014.01.017

A. I. Veksler, P'-points, P'-sets, P'-spaces. A new class of order-continuous measures and functionals, Sov. Math. Dokl. 14 (1973), 1445-1450.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem