- -

Some classes of topological spaces related to zero-sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some classes of topological spaces related to zero-sets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Golrizkhatami, F. es_ES
dc.contributor.author Taherifar, Ali es_ES
dc.date.accessioned 2022-05-25T06:41:38Z
dc.date.available 2022-05-25T06:41:38Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182878
dc.description.abstract [EN] An almost P-space is a topological space in which every zero-set is regular-closed. We introduce a large class of spaces, C-almost P-space (briefly CAP-space), consisting of those spaces in which the closure of the interior of every zero-set is a zero-set. In this paper we study CAP-spaces. It is proved that if X is a dense and Z#-embedded subspace of a space T, then T is CAP if and only if X is a CAP and CRZ-extended in T (i.e, for each regular-closed zero-set Z in X, clTZ is a zero-set in T). In 6P.5 of [8] it was shown that a closed countable union of zero-sets need not be a zero-set. We call X a CZ-space whenever the closure of any countable union of zero-sets is a zero-set. This class of spaces contains the class of P-spaces, perfectly normal spaces, and is contained in the cozero complemented spaces and CAP-spaces. In this paper we study topological properties of CZ (resp. cozero complemented)-space and other classes of topological spaces near to them. Some algebraic and topological equivalent conditions of CZ (resp. cozero complemented)-space are characterized. Examples are provided to illustrate and delimit our results. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Zero-set es_ES
dc.subject Almost P-space es_ES
dc.subject Compact space es_ES
dc.subject Z-embedded subset es_ES
dc.title Some classes of topological spaces related to zero-sets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15668
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Golrizkhatami, F.; Taherifar, A. (2022). Some classes of topological spaces related to zero-sets. Applied General Topology. 23(1):1-16. https://doi.org/10.4995/agt.2022.15668 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15668 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15668 es_ES
dc.description.references F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. 1 (2000), 121-132. es_ES
dc.description.references F. Azarpanah, M. Ghirati and A. Taherifar, Closed ideals in C(X) with different reperesentations, Houston Journal of Mathematics 44, no. 1 (2018), 363-383. es_ES
dc.description.references F. Azarpanah, A. A. Hesari, A. R. Salehi and A. Taherifar, A Lindelöfication, Topology Appl. 245 (2018), l46-61. es_ES
dc.description.references https://doi.org/10.1016/j.topol.2018.06.009 es_ES
dc.description.references F. Azarpanah and M. Karavan, On nonregular ideals and $z^o$-ideals in C(X), Czechoslovak Math. J. 55 (2005), 397-407. es_ES
dc.description.references https://doi.org/10.1007/s10587-005-0030-0 es_ES
dc.description.references F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, On z-ideals in C(X), Fund. Math. 160 (1999), 15-25. es_ES
dc.description.references https://doi.org/10.4064/fm_1999_160_1_1_15_25 es_ES
dc.description.references R. L. Blair and A. W. Hager, Extension of zero-sets and real-valued functions, Math. Z. 136 (1974), 41-52. es_ES
dc.description.references https://doi.org/10.1007/BF01189255 es_ES
dc.description.references F. Dashiel, A. Hager and M. Henriksen, Order-Cauchy completions and vector lattices of continuous functions, Canad. J. Math. XXXII (1980), 657-685. es_ES
dc.description.references https://doi.org/10.4153/CJM-1980-052-0 es_ES
dc.description.references L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976. es_ES
dc.description.references M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. es_ES
dc.description.references https://doi.org/10.1090/S0002-9947-1965-0194880-9 es_ES
dc.description.references M. Henriksen and G. Woods, Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact, Topology Appl. 141 (2004), 147-170. es_ES
dc.description.references https://doi.org/10.1016/j.topol.2003.12.004 es_ES
dc.description.references R. Levy, Almost P-spaces, Canad. J. Math. 2 (1977), 284-288. es_ES
dc.description.references https://doi.org/10.4153/CJM-1977-030-7 es_ES
dc.description.references A. Taherifar, Some new classes of topological spaces and annihilator ideals, Topology Appl. 165 (2014), 84-97. es_ES
dc.description.references https://doi.org/10.1016/j.topol.2014.01.017 es_ES
dc.description.references A. I. Veksler, P'-points, P'-sets, P'-spaces. A new class of order-continuous measures and functionals, Sov. Math. Dokl. 14 (1973), 1445-1450. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem