- -

Boyd-Wong contractions in F-metric spaces and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Boyd-Wong contractions in F-metric spaces and applications

Mostrar el registro completo del ítem

Bera, A.; Dey, LK.; Som, S.; Garai, H.; Sintunavarat, W. (2022). Boyd-Wong contractions in F-metric spaces and applications. Applied General Topology. 23(1):157-167. https://doi.org/10.4995/agt.2022.15356

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182885

Ficheros en el ítem

Metadatos del ítem

Título: Boyd-Wong contractions in F-metric spaces and applications
Autor: Bera, Ashis Dey, Lakshmi Kanta Som, Sumit Garai, Hiranmoy Sintunavarat, Wutiphol
Fecha difusión:
Resumen:
[EN] The main aim of this paper is to  study the Boyd-Wong type fixed point result in the  F-metric context and apply it to obtain  some existence and uniqueness criteria of solution(s) to a second order initial value ...[+]
Palabras clave: Fractional differential equation , Boyd-Wong fixed point theorem , F-metric space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15356
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15356
Código del Proyecto:
info:eu-repo/grantAgreement/CSIR//25(0285)%2F18%2FEMR-II
info:eu-repo/grantAgreement/NRCT//N41A640092
Agradecimientos:
The Research is funded by the Ministry of Human Resource and Development, Government of India and by the Council of Scientific and Industrial Research (CSIR), Government of India under the Grant Number: 25(0285)/18/EMR-II. ...[+]
Tipo: Artículo

References

I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numerical Functional Analysis and Optimization 42, no. 8 (2021), 935-954.

https://doi.org/10.1080/01630563.2021.1933526

T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160, no. 12 (2013), 1486-1493. [+]
I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numerical Functional Analysis and Optimization 42, no. 8 (2021), 935-954.

https://doi.org/10.1080/01630563.2021.1933526

T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160, no. 12 (2013), 1486-1493.

https://doi.org/10.1016/j.topol.2013.05.027

M. Aslantas, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (2021), 483-496.

https://doi.org/10.31801/cfsuasmas.780729

H. Aydi, M. Jleli and B. Samet, On the absence of global solution for some q-difference inequalities, Adv. Difference Equ. 2019, no. 1 (2019), 1-9.

https://doi.org/10.1186/s13662-019-1985-8

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.

https://doi.org/10.4064/fm-3-1-133-181

A. Bera, H. Garai, B. Damjanovic and A. Chanda, Some interesting results on $mathcal{F}$-metric spaces, Filomat 33, no. 10 (2019), 3257-3268.

https://doi.org/10.2298/FIL1910257B

A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31-37.

D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20, no. 2 (1969), 458-464.

https://doi.org/10.1090/S0002-9939-1969-0239559-9

A. Chanda, S. Mondal, L. K. Dey and S. Karmakar, ${C}^*$-algebra-valued contractive mappings with its application to integral equations, Indian J. Math. 59, no. 1 (2017), 107-124.

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Osstrav. 1, no. 1 (1993), 5-11.

S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (1988), 263-276.

K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam. 29 (2002), 3-22.

https://doi.org/10.1023/A:1016592219341

M. F. Elettreby, A. A. Al-Raezah and T. Nabil, Fractional order model of two-prey one-predator system, Math. Probl. Eng. 12 (2017), 1-13.

https://doi.org/10.1155/2017/6714538

H. Garai, L. K. Dey and A. Chanda, Positive solutions to a fractional thermostat model in Banach spaces via fixed point results, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-24.

https://doi.org/10.1007/s11784-018-0584-8

M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-20.

https://doi.org/10.1007/s11784-018-0606-6

M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, no. 1 (2015), 1-14.

https://doi.org/10.1186/s13663-015-0312-7

M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73, no. 9 (2010), 3123-3129.

https://doi.org/10.1016/j.na.2010.06.084

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier (2006).

Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl. 21, no. 1 (2019), 1-4.

https://doi.org/10.1007/s11784-019-0663-5

Z. D. Mitrović and S. Radenović, The Banach and Reich contractions in $b_v(s)$-metric spaces. J. Fixed Point Theory Appl. 19, no. 4 (2017), 3087-3095.

https://doi.org/10.1007/s11784-017-0469-2

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7, no. 2 (2006), 289-297.

H. Sahin, Existence and uniqueness results for nonlinear fractional differential equations via new Q-function, Adv. Oper. Theory 7, no. 1 (2022), 1-21.

https://doi.org/10.1007/s43036-021-00168-9

K. Sawangsup and W. Sintunavarat, On solving nonlinear matrix equations in terms of b-simulation functions in b-metric spaces with numerical solutions, Comput. Appl. Math. 37 (2018), 5829-5843.

https://doi.org/10.1007/s40314-018-0664-9

S. Som, A. Bera and L. K. Dey, Some remarks on the metrizability of $mathcal{F}$-metric spaces, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-7.

https://doi.org/10.1007/s11784-019-0753-4

O. Yamaod, W. Sintunavarat, On new homotopy results via a generalize extended simulation function in b-metric spaces, J. Nonlinear Convex Anal. 20, no. 10 (2019), 2225-2238.

O. Yamaod and W. Sintunavarat, Discussion of hybrid JS-contractions in b-metric spaces with applications to the existence of solution for nonlinear integral equations, Fixed Point Theory 22, no. 2 (2021), 899-912.

https://doi.org/10.24193/fpt-ro.2021.2.59

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem