- -

Boyd-Wong contractions in F-metric spaces and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Boyd-Wong contractions in F-metric spaces and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bera, Ashis es_ES
dc.contributor.author Dey, Lakshmi Kanta es_ES
dc.contributor.author Som, Sumit es_ES
dc.contributor.author Garai, Hiranmoy es_ES
dc.contributor.author Sintunavarat, Wutiphol es_ES
dc.date.accessioned 2022-05-25T08:04:21Z
dc.date.available 2022-05-25T08:04:21Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182885
dc.description.abstract [EN] The main aim of this paper is to  study the Boyd-Wong type fixed point result in the  F-metric context and apply it to obtain  some existence and uniqueness criteria of solution(s) to a second order initial value problem and a Caputo fractional differential equation. We substantiate our obtained result  by finding a suitable non-trivial example. es_ES
dc.description.sponsorship The Research is funded by the Ministry of Human Resource and Development, Government of India and by the Council of Scientific and Industrial Research (CSIR), Government of India under the Grant Number: 25(0285)/18/EMR-II. This project is funded by National Research Council of Thailand (NRCT) N41A640092. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fractional differential equation es_ES
dc.subject Boyd-Wong fixed point theorem es_ES
dc.subject F-metric space es_ES
dc.title Boyd-Wong contractions in F-metric spaces and applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15356
dc.relation.projectID info:eu-repo/grantAgreement/CSIR//25(0285)%2F18%2FEMR-II es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRCT//N41A640092 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bera, A.; Dey, LK.; Som, S.; Garai, H.; Sintunavarat, W. (2022). Boyd-Wong contractions in F-metric spaces and applications. Applied General Topology. 23(1):157-167. https://doi.org/10.4995/agt.2022.15356 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15356 es_ES
dc.description.upvformatpinicio 157 es_ES
dc.description.upvformatpfin 167 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15356 es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.description.references I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numerical Functional Analysis and Optimization 42, no. 8 (2021), 935-954. es_ES
dc.description.references https://doi.org/10.1080/01630563.2021.1933526 es_ES
dc.description.references T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160, no. 12 (2013), 1486-1493. es_ES
dc.description.references https://doi.org/10.1016/j.topol.2013.05.027 es_ES
dc.description.references M. Aslantas, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (2021), 483-496. es_ES
dc.description.references https://doi.org/10.31801/cfsuasmas.780729 es_ES
dc.description.references H. Aydi, M. Jleli and B. Samet, On the absence of global solution for some q-difference inequalities, Adv. Difference Equ. 2019, no. 1 (2019), 1-9. es_ES
dc.description.references https://doi.org/10.1186/s13662-019-1985-8 es_ES
dc.description.references S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. es_ES
dc.description.references https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references A. Bera, H. Garai, B. Damjanovic and A. Chanda, Some interesting results on $mathcal{F}$-metric spaces, Filomat 33, no. 10 (2019), 3257-3268. es_ES
dc.description.references https://doi.org/10.2298/FIL1910257B es_ES
dc.description.references A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31-37. es_ES
dc.description.references D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20, no. 2 (1969), 458-464. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-1969-0239559-9 es_ES
dc.description.references A. Chanda, S. Mondal, L. K. Dey and S. Karmakar, ${C}^*$-algebra-valued contractive mappings with its application to integral equations, Indian J. Math. 59, no. 1 (2017), 107-124. es_ES
dc.description.references S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Osstrav. 1, no. 1 (1993), 5-11. es_ES
dc.description.references S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (1988), 263-276. es_ES
dc.description.references K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam. 29 (2002), 3-22. es_ES
dc.description.references https://doi.org/10.1023/A:1016592219341 es_ES
dc.description.references M. F. Elettreby, A. A. Al-Raezah and T. Nabil, Fractional order model of two-prey one-predator system, Math. Probl. Eng. 12 (2017), 1-13. es_ES
dc.description.references https://doi.org/10.1155/2017/6714538 es_ES
dc.description.references H. Garai, L. K. Dey and A. Chanda, Positive solutions to a fractional thermostat model in Banach spaces via fixed point results, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-24. es_ES
dc.description.references https://doi.org/10.1007/s11784-018-0584-8 es_ES
dc.description.references M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-20. es_ES
dc.description.references https://doi.org/10.1007/s11784-018-0606-6 es_ES
dc.description.references M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, no. 1 (2015), 1-14. es_ES
dc.description.references https://doi.org/10.1186/s13663-015-0312-7 es_ES
dc.description.references M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73, no. 9 (2010), 3123-3129. es_ES
dc.description.references https://doi.org/10.1016/j.na.2010.06.084 es_ES
dc.description.references A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier (2006). es_ES
dc.description.references Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl. 21, no. 1 (2019), 1-4. es_ES
dc.description.references https://doi.org/10.1007/s11784-019-0663-5 es_ES
dc.description.references Z. D. Mitrović and S. Radenović, The Banach and Reich contractions in $b_v(s)$-metric spaces. J. Fixed Point Theory Appl. 19, no. 4 (2017), 3087-3095. es_ES
dc.description.references https://doi.org/10.1007/s11784-017-0469-2 es_ES
dc.description.references Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7, no. 2 (2006), 289-297. es_ES
dc.description.references H. Sahin, Existence and uniqueness results for nonlinear fractional differential equations via new Q-function, Adv. Oper. Theory 7, no. 1 (2022), 1-21. es_ES
dc.description.references https://doi.org/10.1007/s43036-021-00168-9 es_ES
dc.description.references K. Sawangsup and W. Sintunavarat, On solving nonlinear matrix equations in terms of b-simulation functions in b-metric spaces with numerical solutions, Comput. Appl. Math. 37 (2018), 5829-5843. es_ES
dc.description.references https://doi.org/10.1007/s40314-018-0664-9 es_ES
dc.description.references S. Som, A. Bera and L. K. Dey, Some remarks on the metrizability of $mathcal{F}$-metric spaces, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-7. es_ES
dc.description.references https://doi.org/10.1007/s11784-019-0753-4 es_ES
dc.description.references O. Yamaod, W. Sintunavarat, On new homotopy results via a generalize extended simulation function in b-metric spaces, J. Nonlinear Convex Anal. 20, no. 10 (2019), 2225-2238. es_ES
dc.description.references O. Yamaod and W. Sintunavarat, Discussion of hybrid JS-contractions in b-metric spaces with applications to the existence of solution for nonlinear integral equations, Fixed Point Theory 22, no. 2 (2021), 899-912. es_ES
dc.description.references https://doi.org/10.24193/fpt-ro.2021.2.59 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem