Mostrar el registro sencillo del ítem
dc.contributor.author | Mandal, Pabitra Narayan | es_ES |
dc.date.accessioned | 2022-05-25T09:23:22Z | |
dc.date.available | 2022-05-25T09:23:22Z | |
dc.date.issued | 2022-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/182886 | |
dc.description.abstract | [EN] In this article, we provide a simple geometric proof of the following fact: The existence of transitive normalized maps induced by linear operators is possible only when the underlying space's real dimension is either 1 or 2 or infinity. A similar result holds for projective transformation as well. | es_ES |
dc.description.sponsorship | NBHM-DAE (Government of India) Ref. No. 2/39(2)/2016/NBHM/R & D-II/11397 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Topological transitivity | es_ES |
dc.subject | Supercyclicity | es_ES |
dc.subject | Projective transformation | es_ES |
dc.subject | Linear transformation | es_ES |
dc.subject | Cone transitivity | es_ES |
dc.title | Topological transitivity of the normalized maps induced by linear operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.15613 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DAE//2/39(2)/2016%2FNBHM%2FR & D-II%2F11397 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mandal, PN. (2022). Topological transitivity of the normalized maps induced by linear operators. Applied General Topology. 23(1):135-143. https://doi.org/10.4995/agt.2022.15613 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.15613 | es_ES |
dc.description.upvformatpinicio | 135 | es_ES |
dc.description.upvformatpfin | 143 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\15613 | es_ES |
dc.contributor.funder | Department of Atomic Energy, Government of India | es_ES |
dc.description.references | J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96. | es_ES |
dc.description.references | https://doi.org/10.1016/S0166-8641(98)00041-8 | es_ES |
dc.description.references | F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge. | es_ES |
dc.description.references | https://doi.org/10.1017/CBO9780511581113 | es_ES |
dc.description.references | L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag (1992), Berlin. | es_ES |
dc.description.references | https://doi.org/10.1007/BFb0084762 | es_ES |
dc.description.references | S. G. Dani, Dynamical properties of linear and projective transformation and their applications, Indian Journal of Pure and Applied Mathematics 35 (2004), 1365-1394. | es_ES |
dc.description.references | M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer (2011), New York. | es_ES |
dc.description.references | https://doi.org/10.1007/978-1-4419-7515-7 | es_ES |
dc.description.references | K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer (2011), London. | es_ES |
dc.description.references | https://doi.org/10.1007/978-1-4471-2170-1 | es_ES |
dc.description.references | G. Herzog, On linear operators having supercyclic vectors, Studia Mathematica 103 (1992), 295-298. | es_ES |
dc.description.references | https://doi.org/10.4064/sm-103-3-295-298 | es_ES |
dc.description.references | N. H. Kuiper, Topological conjugacy of real projective transformation, Topology 15 (1976), 13-22. | es_ES |
dc.description.references | https://doi.org/10.1016/0040-9383(76)90046-X | es_ES |
dc.description.references | R. Shah, A. Nagar and S. Shridharan (Ed. by), Elements of Dynamical Systems, Hindusthan Publishers (2020), Delhi. | es_ES |