- -

Topological transitivity of the normalized maps induced by linear operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological transitivity of the normalized maps induced by linear operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mandal, Pabitra Narayan es_ES
dc.date.accessioned 2022-05-25T09:23:22Z
dc.date.available 2022-05-25T09:23:22Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182886
dc.description.abstract [EN] In this article, we provide a simple geometric proof of the following fact: The existence of transitive normalized maps induced by linear operators is possible only when the underlying space's real dimension is either 1 or 2 or infinity. A similar result holds for projective transformation as well. es_ES
dc.description.sponsorship NBHM-DAE (Government of India) Ref. No. 2/39(2)/2016/NBHM/R & D-II/11397 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Topological transitivity es_ES
dc.subject Supercyclicity es_ES
dc.subject Projective transformation es_ES
dc.subject Linear transformation es_ES
dc.subject Cone transitivity es_ES
dc.title Topological transitivity of the normalized maps induced by linear operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15613
dc.relation.projectID info:eu-repo/grantAgreement/DAE//2/39(2)/2016%2FNBHM%2FR & D-II%2F11397 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mandal, PN. (2022). Topological transitivity of the normalized maps induced by linear operators. Applied General Topology. 23(1):135-143. https://doi.org/10.4995/agt.2022.15613 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15613 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 143 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15613 es_ES
dc.contributor.funder Department of Atomic Energy, Government of India es_ES
dc.description.references J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96. es_ES
dc.description.references https://doi.org/10.1016/S0166-8641(98)00041-8 es_ES
dc.description.references F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge. es_ES
dc.description.references https://doi.org/10.1017/CBO9780511581113 es_ES
dc.description.references L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag (1992), Berlin. es_ES
dc.description.references https://doi.org/10.1007/BFb0084762 es_ES
dc.description.references S. G. Dani, Dynamical properties of linear and projective transformation and their applications, Indian Journal of Pure and Applied Mathematics 35 (2004), 1365-1394. es_ES
dc.description.references M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer (2011), New York. es_ES
dc.description.references https://doi.org/10.1007/978-1-4419-7515-7 es_ES
dc.description.references K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer (2011), London. es_ES
dc.description.references https://doi.org/10.1007/978-1-4471-2170-1 es_ES
dc.description.references G. Herzog, On linear operators having supercyclic vectors, Studia Mathematica 103 (1992), 295-298. es_ES
dc.description.references https://doi.org/10.4064/sm-103-3-295-298 es_ES
dc.description.references N. H. Kuiper, Topological conjugacy of real projective transformation, Topology 15 (1976), 13-22. es_ES
dc.description.references https://doi.org/10.1016/0040-9383(76)90046-X es_ES
dc.description.references R. Shah, A. Nagar and S. Shridharan (Ed. by), Elements of Dynamical Systems, Hindusthan Publishers (2020), Delhi. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem