- -

On w-Isbell-convexity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On w-Isbell-convexity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olela Otafudu, Olivier es_ES
dc.contributor.author Sebogodi, Katlego es_ES
dc.date.accessioned 2022-05-25T09:47:33Z
dc.date.available 2022-05-25T09:47:33Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182892
dc.description.abstract [EN] Chistyakov introduced and developed a concept of modular metric for an arbitrary set in order to generalise the classical notion of modular on a linear space. In this article, we introduce the theory of hyperconvexity in the setting of modular pseudometric that is herein called w-Isbell-convexity. We show that on a modular set, w-Isbell-convexity is equivalent to hyperconvexity whenever the modular pseudometric is continuous from the right on the set of positive numbers. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Modular pseudometric es_ES
dc.subject Isbell-convexity es_ES
dc.subject w-Isbell-convexity es_ES
dc.title On w-Isbell-convexity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15739
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Olela Otafudu, O.; Sebogodi, K. (2022). On w-Isbell-convexity. Applied General Topology. 23(1):91-105. https://doi.org/10.4995/agt.2022.15739 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15739 es_ES
dc.description.upvformatpinicio 91 es_ES
dc.description.upvformatpfin 105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15739 es_ES
dc.description.references A. A. N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Maths 5 (2020), 6395-6403. es_ES
dc.description.references https://doi.org/10.3934/math.2020411 es_ES
dc.description.references A. A. N. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl. 2013 (2013):163. es_ES
dc.description.references https://doi.org/10.1186/1687-1812-2013-163 es_ES
dc.description.references C. Alaca, M. E. Ege and C. Park, Fixed point results for modular ultrametric spaces, J. Comput. Anal. Appl. 20 (2016), 1259-1267. es_ES
dc.description.references A. H. Ansari, M. Demma, L. Guran, J. R. Lee and C. Park, Fixed point results for C-class functions in modular metric spaces. J. Fixed Point Theory Appl. 20, no. 3 (2018), Paper No. 103. es_ES
dc.description.references https://doi.org/10.1007/s11784-018-0580-z es_ES
dc.description.references V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, arXiv:1112.5561. es_ES
dc.description.references V. V. Chistyakov, Metric modular spaces: Theory and applications, SpringerBriefs in Mathematics, Springer, Switzerland, 2015. es_ES
dc.description.references https://doi.org/10.1007/978-3-319-25283-4 es_ES
dc.description.references V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math. 15 (2008), 3-24. es_ES
dc.description.references V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010), 1-14. es_ES
dc.description.references https://doi.org/10.1016/j.na.2009.04.057 es_ES
dc.description.references S. Cobzas, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012. es_ES
dc.description.references https://doi.org/10.1007/978-3-0348-0478-3 es_ES
dc.description.references M. E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 900-908. es_ES
dc.description.references https://doi.org/10.22436/jnsa.008.06.01 es_ES
dc.description.references M. E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, J. Comput. Anal. Appl. 20 (2016), 24-33. es_ES
dc.description.references M. E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerb. J. Math. 8 (2018), 3-14. es_ES
dc.description.references R. Espínola and M. A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht, The Netherlands (2001), pp. 39135. es_ES
dc.description.references https://doi.org/10.1007/978-94-017-1748-9_13 es_ES
dc.description.references A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Math. 6 (2021), 1781-1799. es_ES
dc.description.references https://doi.org/10.3934/math.2021107 es_ES
dc.description.references H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-Eur. J. Math. 13 (2020): 2050087. es_ES
dc.description.references https://doi.org/10.1142/S1793557120500874 es_ES
dc.description.references E. Kemajou, H.-P. Künzi and O. Olela Otafudu, The Isbell-hull of di-space, Topology Appl. 159 (2012), 2463-2475. es_ES
dc.description.references https://doi.org/10.1016/j.topol.2011.02.016 es_ES
dc.description.references M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, Wiley-Interscience, New York, NY, USA, 2001. es_ES
dc.description.references https://doi.org/10.1002/9781118033074 es_ES
dc.description.references H.-P. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239-304. es_ES
dc.description.references https://doi.org/10.1090/conm/486/09511 es_ES
dc.description.references H.-P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasipseudometric spaces and fixed point theorems, J. Funct. Spaces Appl. 2012 (2012): Art. ID 765903. es_ES
dc.description.references https://doi.org/10.1155/2012/765903 es_ES
dc.description.references N. Kumar and R. Chugh, Convergence and stability results for new three step iteration process in modular spaces, Aust. J. Math. Anal. Appl. 14 (2017): 14. es_ES
dc.description.references Y. Mutemwa, O. Olela Otafudu and H. Sabao, On gluing of quasi-pseudometric spaces, Khayyam J. Math. 6 (2020), 129-140. es_ES
dc.description.references O. Olela Otafudu, On one-local retract in quasi-metric spaces, Topology Proc. 45 (2015), 271-281. es_ES
dc.description.references O. Olela Otafudu and H. Sabao, Set-valued contractions and $q$-hyperconvex spaces, J. Nonlinear Convex Anal. 18 (2017), 1609-1617. es_ES
dc.description.references https://doi.org/10.4995/agt.2017.5818 es_ES
dc.description.references R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. es_ES
dc.description.references https://doi.org/10.1016/0362-546X(79)90055-5 es_ES
dc.description.references H. Sabao and O. Olela Otafudu, On soft quasi-pseudometric spaces, Appl. Gen. Topol. 22 (2021), 17-30. es_ES
dc.description.references https://doi.org/10.4995/agt.2021.13084 es_ES
dc.description.references S. Salbany, Injective objects and morphisms, in: Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck, NJ, 1989, pp. 394-409. es_ES
dc.description.references S. Yamamuro, On conjugate space of Nakano space, Trans. Amer. Math. Soc. 90 (1959), 291-311. es_ES
dc.description.references https://doi.org/10.1090/S0002-9947-1959-0132378-1 es_ES
dc.description.references C. I. Zhu, J. Chen, X. J. Huang and J. H. Chen, Fixed point theorems in modular spaces with simulation functions and altering distance functions with applications, J. Nonlinear Convex Anal. 21 (2020), 1403-1424. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem