Mostrar el registro sencillo del ítem
dc.contributor.author | Olela Otafudu, Olivier | es_ES |
dc.contributor.author | Sebogodi, Katlego | es_ES |
dc.date.accessioned | 2022-05-25T09:47:33Z | |
dc.date.available | 2022-05-25T09:47:33Z | |
dc.date.issued | 2022-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/182892 | |
dc.description.abstract | [EN] Chistyakov introduced and developed a concept of modular metric for an arbitrary set in order to generalise the classical notion of modular on a linear space. In this article, we introduce the theory of hyperconvexity in the setting of modular pseudometric that is herein called w-Isbell-convexity. We show that on a modular set, w-Isbell-convexity is equivalent to hyperconvexity whenever the modular pseudometric is continuous from the right on the set of positive numbers. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Modular pseudometric | es_ES |
dc.subject | Isbell-convexity | es_ES |
dc.subject | w-Isbell-convexity | es_ES |
dc.title | On w-Isbell-convexity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.15739 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Olela Otafudu, O.; Sebogodi, K. (2022). On w-Isbell-convexity. Applied General Topology. 23(1):91-105. https://doi.org/10.4995/agt.2022.15739 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.15739 | es_ES |
dc.description.upvformatpinicio | 91 | es_ES |
dc.description.upvformatpfin | 105 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\15739 | es_ES |
dc.description.references | A. A. N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Maths 5 (2020), 6395-6403. | es_ES |
dc.description.references | https://doi.org/10.3934/math.2020411 | es_ES |
dc.description.references | A. A. N. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl. 2013 (2013):163. | es_ES |
dc.description.references | https://doi.org/10.1186/1687-1812-2013-163 | es_ES |
dc.description.references | C. Alaca, M. E. Ege and C. Park, Fixed point results for modular ultrametric spaces, J. Comput. Anal. Appl. 20 (2016), 1259-1267. | es_ES |
dc.description.references | A. H. Ansari, M. Demma, L. Guran, J. R. Lee and C. Park, Fixed point results for C-class functions in modular metric spaces. J. Fixed Point Theory Appl. 20, no. 3 (2018), Paper No. 103. | es_ES |
dc.description.references | https://doi.org/10.1007/s11784-018-0580-z | es_ES |
dc.description.references | V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, arXiv:1112.5561. | es_ES |
dc.description.references | V. V. Chistyakov, Metric modular spaces: Theory and applications, SpringerBriefs in Mathematics, Springer, Switzerland, 2015. | es_ES |
dc.description.references | https://doi.org/10.1007/978-3-319-25283-4 | es_ES |
dc.description.references | V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math. 15 (2008), 3-24. | es_ES |
dc.description.references | V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010), 1-14. | es_ES |
dc.description.references | https://doi.org/10.1016/j.na.2009.04.057 | es_ES |
dc.description.references | S. Cobzas, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012. | es_ES |
dc.description.references | https://doi.org/10.1007/978-3-0348-0478-3 | es_ES |
dc.description.references | M. E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 900-908. | es_ES |
dc.description.references | https://doi.org/10.22436/jnsa.008.06.01 | es_ES |
dc.description.references | M. E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, J. Comput. Anal. Appl. 20 (2016), 24-33. | es_ES |
dc.description.references | M. E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerb. J. Math. 8 (2018), 3-14. | es_ES |
dc.description.references | R. Espínola and M. A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht, The Netherlands (2001), pp. 39135. | es_ES |
dc.description.references | https://doi.org/10.1007/978-94-017-1748-9_13 | es_ES |
dc.description.references | A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Math. 6 (2021), 1781-1799. | es_ES |
dc.description.references | https://doi.org/10.3934/math.2021107 | es_ES |
dc.description.references | H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-Eur. J. Math. 13 (2020): 2050087. | es_ES |
dc.description.references | https://doi.org/10.1142/S1793557120500874 | es_ES |
dc.description.references | E. Kemajou, H.-P. Künzi and O. Olela Otafudu, The Isbell-hull of di-space, Topology Appl. 159 (2012), 2463-2475. | es_ES |
dc.description.references | https://doi.org/10.1016/j.topol.2011.02.016 | es_ES |
dc.description.references | M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, Wiley-Interscience, New York, NY, USA, 2001. | es_ES |
dc.description.references | https://doi.org/10.1002/9781118033074 | es_ES |
dc.description.references | H.-P. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239-304. | es_ES |
dc.description.references | https://doi.org/10.1090/conm/486/09511 | es_ES |
dc.description.references | H.-P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasipseudometric spaces and fixed point theorems, J. Funct. Spaces Appl. 2012 (2012): Art. ID 765903. | es_ES |
dc.description.references | https://doi.org/10.1155/2012/765903 | es_ES |
dc.description.references | N. Kumar and R. Chugh, Convergence and stability results for new three step iteration process in modular spaces, Aust. J. Math. Anal. Appl. 14 (2017): 14. | es_ES |
dc.description.references | Y. Mutemwa, O. Olela Otafudu and H. Sabao, On gluing of quasi-pseudometric spaces, Khayyam J. Math. 6 (2020), 129-140. | es_ES |
dc.description.references | O. Olela Otafudu, On one-local retract in quasi-metric spaces, Topology Proc. 45 (2015), 271-281. | es_ES |
dc.description.references | O. Olela Otafudu and H. Sabao, Set-valued contractions and $q$-hyperconvex spaces, J. Nonlinear Convex Anal. 18 (2017), 1609-1617. | es_ES |
dc.description.references | https://doi.org/10.4995/agt.2017.5818 | es_ES |
dc.description.references | R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. | es_ES |
dc.description.references | https://doi.org/10.1016/0362-546X(79)90055-5 | es_ES |
dc.description.references | H. Sabao and O. Olela Otafudu, On soft quasi-pseudometric spaces, Appl. Gen. Topol. 22 (2021), 17-30. | es_ES |
dc.description.references | https://doi.org/10.4995/agt.2021.13084 | es_ES |
dc.description.references | S. Salbany, Injective objects and morphisms, in: Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck, NJ, 1989, pp. 394-409. | es_ES |
dc.description.references | S. Yamamuro, On conjugate space of Nakano space, Trans. Amer. Math. Soc. 90 (1959), 291-311. | es_ES |
dc.description.references | https://doi.org/10.1090/S0002-9947-1959-0132378-1 | es_ES |
dc.description.references | C. I. Zhu, J. Chen, X. J. Huang and J. H. Chen, Fixed point theorems in modular spaces with simulation functions and altering distance functions with applications, J. Nonlinear Convex Anal. 21 (2020), 1403-1424. | es_ES |