V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35 (2019), 293-304.
https://doi.org/10.37193/CJM.2019.03.04
V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition, Carpathian J. Math. 36 (2020), 27-34.
[+]
V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35 (2019), 293-304.
https://doi.org/10.37193/CJM.2019.03.04
V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition, Carpathian J. Math. 36 (2020), 27-34.
https://doi.org/10.37193/CJM.2020.01.03
F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
https://doi.org/10.1073/pnas.54.4.1041
F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
https://doi.org/10.1007/BF01109805
R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982), vol. 18, Contemp. Math., pages 1-47. Amer. Math. Soc., Providence, RI, 1983.
https://doi.org/10.1090/conm/018/728592
C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, vol. 1965 Lecture Notes in Mathematics, Springer-Verlag London, Ltd., London, 2009.
https://doi.org/10.1007/978-1-84882-190-3
J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc. 135 (1969), 459-485.
https://doi.org/10.1090/S0002-9947-1969-0234327-0
J. García-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185-195.
https://doi.org/10.1016/j.jmaa.2010.08.069
M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103.
https://doi.org/10.1006/jmaa.1997.5268
K. Goebel and W. Kirk, Topics in metric fixed point theory, vol. 28, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990.
https://doi.org/10.1017/CBO9780511526152
K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
https://doi.org/10.1090/S0002-9939-1972-0298500-3
D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.
https://doi.org/10.1002/mana.19650300312
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
https://doi.org/10.1090/S0002-9939-1974-0336469-5
S. H. Khan and T. Suzuki, A Reich-type convergence theorem for generalized nonexpansive mappings in uniformly convex Banach spaces, Nonlinear Anal. 80 (2013), 211-215.
https://doi.org/10.1016/j.na.2012.09.005
W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
https://doi.org/10.2307/2313345
M. A. Krasnosel'skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), 123-127.
E. Llorens-Fuster and E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal. 2011, Art. ID 435686, 15 pp.
https://doi.org/10.1155/2011/435686
M. Maiti and M. K. Ghosh, Approximating fixed points by Ishikawa iterates, Bull. Austral. Math. Soc. 40 (1989), 113-117.
https://doi.org/10.1017/S0004972700003555
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
https://doi.org/10.1090/S0002-9904-1967-11761-0
R. Pandey, R. Pant, V. Rakočević and R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2019), Paper No. 7, 24 pp.
https://doi.org/10.1007/s00025-018-0930-6
R. Pant and R. Shukla, Some new fixed point results for nonexpansive type mappings in Banach and Hilbert spaces. Indian J. Math. 62 (2020), 1-20.
https://doi.org/10.23952/jnfa.2020.36
H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.
https://doi.org/10.1090/S0002-9939-1974-0346608-8
R. Shukla and R. Pant, Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 559-567.
https://doi.org/10.31197/atnaa.954446
R. Shukla and A. Wiśnicki, Iterative methods for monotone nonexpansive mappings in uniformly convex spaces, Adv. Nonlinear Anal. 10 (2021), 1061-1070.
https://doi.org/10.1515/anona-2020-0170
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088-1095.
https://doi.org/10.1016/j.jmaa.2007.09.023
K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
https://doi.org/10.1006/jmaa.1993.1309
E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986.
https://doi.org/10.1007/978-1-4612-4838-5
[-]