- -

Some fixed point results for enriched nonexpansive type mappings in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some fixed point results for enriched nonexpansive type mappings in Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shukla, Rahul es_ES
dc.contributor.author Pant, Rajendra es_ES
dc.date.accessioned 2022-05-25T09:53:14Z
dc.date.available 2022-05-25T09:53:14Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182895
dc.description.abstract [EN] In this paper, we introduce two new classes of nonlinear mappings and present some new existence and convergence theorems for these mappings in Banach spaces. More precisely, we employ the Krasnosel'skii iterative method to obtain fixed points of Suzuki-enriched nonexpansive mappings under different conditions. Moreover, we approximate the fixed point of enriched-quasinonexpansive mappings via Ishikawa iterative method.  es_ES
dc.description.sponsorship The first author acknowledges the support from the GES 4.0 fellowship, University of Johannesburg, South Africa. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Nonexpansive mapping es_ES
dc.subject Enriched nonexpansive mapping es_ES
dc.subject Banach space es_ES
dc.title Some fixed point results for enriched nonexpansive type mappings in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.16165
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Shukla, R.; Pant, R. (2022). Some fixed point results for enriched nonexpansive type mappings in Banach spaces. Applied General Topology. 23(1):31-43. https://doi.org/10.4995/agt.2022.16165 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.16165 es_ES
dc.description.upvformatpinicio 31 es_ES
dc.description.upvformatpfin 43 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16165 es_ES
dc.contributor.funder University of Johannesburg es_ES
dc.description.references V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35 (2019), 293-304. es_ES
dc.description.references https://doi.org/10.37193/CJM.2019.03.04 es_ES
dc.description.references V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition, Carpathian J. Math. 36 (2020), 27-34. es_ES
dc.description.references https://doi.org/10.37193/CJM.2020.01.03 es_ES
dc.description.references F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044. es_ES
dc.description.references https://doi.org/10.1073/pnas.54.4.1041 es_ES
dc.description.references F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. es_ES
dc.description.references https://doi.org/10.1007/BF01109805 es_ES
dc.description.references R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982), vol. 18, Contemp. Math., pages 1-47. Amer. Math. Soc., Providence, RI, 1983. es_ES
dc.description.references https://doi.org/10.1090/conm/018/728592 es_ES
dc.description.references C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, vol. 1965 Lecture Notes in Mathematics, Springer-Verlag London, Ltd., London, 2009. es_ES
dc.description.references https://doi.org/10.1007/978-1-84882-190-3 es_ES
dc.description.references J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc. 135 (1969), 459-485. es_ES
dc.description.references https://doi.org/10.1090/S0002-9947-1969-0234327-0 es_ES
dc.description.references J. García-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185-195. es_ES
dc.description.references https://doi.org/10.1016/j.jmaa.2010.08.069 es_ES
dc.description.references M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103. es_ES
dc.description.references https://doi.org/10.1006/jmaa.1997.5268 es_ES
dc.description.references K. Goebel and W. Kirk, Topics in metric fixed point theory, vol. 28, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. es_ES
dc.description.references https://doi.org/10.1017/CBO9780511526152 es_ES
dc.description.references K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-1972-0298500-3 es_ES
dc.description.references D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. es_ES
dc.description.references https://doi.org/10.1002/mana.19650300312 es_ES
dc.description.references S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-1974-0336469-5 es_ES
dc.description.references S. H. Khan and T. Suzuki, A Reich-type convergence theorem for generalized nonexpansive mappings in uniformly convex Banach spaces, Nonlinear Anal. 80 (2013), 211-215. es_ES
dc.description.references https://doi.org/10.1016/j.na.2012.09.005 es_ES
dc.description.references W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. es_ES
dc.description.references https://doi.org/10.2307/2313345 es_ES
dc.description.references M. A. Krasnosel'skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), 123-127. es_ES
dc.description.references E. Llorens-Fuster and E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal. 2011, Art. ID 435686, 15 pp. es_ES
dc.description.references https://doi.org/10.1155/2011/435686 es_ES
dc.description.references M. Maiti and M. K. Ghosh, Approximating fixed points by Ishikawa iterates, Bull. Austral. Math. Soc. 40 (1989), 113-117. es_ES
dc.description.references https://doi.org/10.1017/S0004972700003555 es_ES
dc.description.references Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. es_ES
dc.description.references https://doi.org/10.1090/S0002-9904-1967-11761-0 es_ES
dc.description.references R. Pandey, R. Pant, V. Rakočević and R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2019), Paper No. 7, 24 pp. es_ES
dc.description.references https://doi.org/10.1007/s00025-018-0930-6 es_ES
dc.description.references R. Pant and R. Shukla, Some new fixed point results for nonexpansive type mappings in Banach and Hilbert spaces. Indian J. Math. 62 (2020), 1-20. es_ES
dc.description.references https://doi.org/10.23952/jnfa.2020.36 es_ES
dc.description.references H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-1974-0346608-8 es_ES
dc.description.references R. Shukla and R. Pant, Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 559-567. es_ES
dc.description.references https://doi.org/10.31197/atnaa.954446 es_ES
dc.description.references R. Shukla and A. Wiśnicki, Iterative methods for monotone nonexpansive mappings in uniformly convex spaces, Adv. Nonlinear Anal. 10 (2021), 1061-1070. es_ES
dc.description.references https://doi.org/10.1515/anona-2020-0170 es_ES
dc.description.references T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088-1095. es_ES
dc.description.references https://doi.org/10.1016/j.jmaa.2007.09.023 es_ES
dc.description.references K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. es_ES
dc.description.references https://doi.org/10.1006/jmaa.1993.1309 es_ES
dc.description.references E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986. es_ES
dc.description.references https://doi.org/10.1007/978-1-4612-4838-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem