- -

Supersymmetry in the time domain and its applications in optics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supersymmetry in the time domain and its applications in optics

Mostrar el registro completo del ítem

García Meca, C.; Macho-Ortiz, A.; Llorente, R. (2020). Supersymmetry in the time domain and its applications in optics. Nature Communications. 11(1):1-8. https://doi.org/10.1038/s41467-020-14634-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183011

Ficheros en el ítem

Metadatos del ítem

Título: Supersymmetry in the time domain and its applications in optics
Autor: García Meca, Carlos Macho-Ortiz, Andrés Llorente, Roberto
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Supersymmetry is a conjectured symmetry between bosons and fermions aiming at solving fundamental questions in string and quantum field theory. Its subsequent application to quantum mechanics led to a ground-breaking ...[+]
Palabras clave: Supersymmetry , Time-varying , Invisibility
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/s41467-020-14634-0
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41467-020-14634-0
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2013-062952/ES/BES-2013-062952/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2018%2F324//NEXT-GENERATION BEYOND-5G SUB-THz IN-HOME PICO-CELLULAR CONNECTIVITY (NXTIC)./
info:eu-repo/grantAgreement/MINECO//TEC2015-70858-C2-1-R/ES/TECNOLOGIA DE TRANSMISION OPTICA MEDIANTE MULTIPLEXACION MULTIDIMENSIONAL EN FIBRA MULTI-NUCLEO PARA REDES OPTICAS DE ACCESO Y DE TRANSPORTE CELULAR/
info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/
Agradecimientos:
This work was supported by Spanish National Plan projects TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE) and MINECO/FEDER UE XCORE TEC2015-70858-C2-1-R, as well as Generalitat Valenciana Plan project NXTIC AICO/2018/324. A.M.O.'s ...[+]
Tipo: Artículo

References

Gol’fand, Y. A. & Likhtman, E. P. Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 13, 452 (1971).

Ramond, P. Dual theory for free fermions. Phys. Rev. D. 3, 2415 (1971).

Neveu, A. & Schwarz, J. H. Factorizable dual model of pions. Nucl. Phys. B 31, 86 (1971). [+]
Gol’fand, Y. A. & Likhtman, E. P. Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 13, 452 (1971).

Ramond, P. Dual theory for free fermions. Phys. Rev. D. 3, 2415 (1971).

Neveu, A. & Schwarz, J. H. Factorizable dual model of pions. Nucl. Phys. B 31, 86 (1971).

Wess, J. & Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39 (1974).

Freedman, D. Z., van Nieuwenhuizen, P. & Ferrara, S. Progress toward a theory of supergravity. Phys. Rev. D. 13, 3214 (1976).

Cooper, F., Khare, A. & Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995).

Ulmer, K. A. Supersymmetry: experimental status. Preprint at https://arxiv.org/abs/1601.03774 (2016).

Chumakov, S. M. & Wolf, K. B. Supersymmetry in Helmholtz optics. Phys. Lett. A 193, 51 (1994).

Miri, M.-A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).

Miri, M.-A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).

Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).

Macho, A., Llorente, R. & García-Meca, C. Supersymmetric transformations in optical fibers. Phys. Rev. Appl 9, 014024 (2018).

Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623 (2019).

Macho, A. Multi-core fiber and optical supersymmetry: theory and applications. PhD Thesis, Universitat Politècnica de València (2019).

Baggrov, V. G. & Samsonov, B. F. Supersymmetry of a nonstationary Schrödinger equation. Phys. Lett. A 210, 60 (1996).

Schulze-Halberg, A. & Jimenez, J. M. C. Supersymmetry of generalized linear Schrödinger equations in (1 + 1) dimensions. Symmetry 1, 115–144 (2009).

Yanik, M. F. & Fan, S. Time reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004).

Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon 11, 774–783 (2017).

Koutserimpas, T. T. & Fleury, R. Nonreciprocal gain in non-hermitian time-Floquet systems. Phys. Rev. Lett. 120, 087401 (2018).

Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018).

Lustig, E., Sharabi, Y. & Segev, M. Topological aspects of photonic time crystals. Optica 5, 1390–1395 (2018).

Law, C. K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A 49, 433 (1994).

Kord, A., Sounas, D. L. & Alù, A. Magnet-less circulators based on spatiotemporal modulation of bandstop filters in a delta topology. IEEE Trans. Microw. Theory Tech. 66, 911–926 (2018).

Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

Wang, Q. et al. Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci. Rep. 5, 10880 (2015).

Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Phys. Rev. Lett. 122, 124301 (2019).

Mendonça, J. T. & Shukla, P. K. Time refraction and time reflection: two basic concepts. Phys. Scr. 65, 160–163 (2002).

Horsley, S. A. R. & Bugler-Lamb, S. Negative frequencies in wave propagation: a microscopic model. Phys. Rev. A 93, 063828 (2016).

Philbin, T. G. et al. Fiber-optical analog of the Event Horizon. Science 319, 1367 (2008).

Leonhardt, U. & Philbin, T. G. Geometry and Light: The Science of Invisibility. (Dover Publications, New York, 2010).

Horsley, S. A. R., Artoni, M. & La Rocca, G. C. Spatial Kramers-Kronig relations and the reflection of waves. Nat. Photon 9, 436–439 (2015).

Xiao, Y., Maywar, D. N. & Agrawal, G. P. Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 39, 574–577 (2014).

Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nat. Mater. 8, 639–642 (2009).

Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon 9, 525–528 (2015).

Berry, M. V. Fake Airy functions and the asymptotics of reflectionlessness. J. Phys. A: Math. Gen. 23, L243–L246 (1990).

Berry, M. V. Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009).

Shi, Y., Han, S. & Fan, S. Optical circulation and isolation based on indirect photonic transitions of guided resonance modes. ACS Photonics 4, 1639–1645 (2017).

Lee, K. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photon 12, 765–773 (2018).

Cummer, S. A. & Thompson, R. T. Frequency conversion by exploiting time in transformation optics. J. Opt. 13, 024007 (2010).

Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. What is the temporal analog of reflection and refraction of optical beams? Phys. Rev. Lett. 115, 183901 (2015).

Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. Temporal waveguides for optical pulses. J. Opt. Soc. Am. B 33, 1112–1119 (2016).

Zhou, J., Zheng, G. & Wu, J. Comprehensive study on the concept of temporal optical waveguides. Phys. Rev. A 93, 063847 (2016).

Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G. & Thomson, R. R. The photonic lantern. Adv. Opt. Photonics 7, 107–167 (2015).

Vázquez, J. M., Mazilu, M., Miller, A. & Galbraith, I. Wavelet transforms for optical pulse analysis. J. Opt. Soc. Am. A 22, 2890–2899 (2005).

Dantus, M. & Lozovoy, V. V. Experimental coherent laser control of physicochemical processes. Chem. Rev. 104, 1813–1860 (2004).

Weiner, A. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 6167 (2014).

Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 6287 (2016).

Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

Cheng, C.-H. et al. Strong optical nonlinearity of the nonstoichiometric silicon carbide. J. Mater. Chem. C. 3, 10164–10176 (2015).

Leonardis, F. D., Soref, R. A. & Passaro, V. M. N. Dispersion of nonresonant third-order nonlinearities in silicon carbide. Sci. Rep. 7, 40924 (2017).

Michel, A.-K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon 10, 60–65 (2016).

Wang, W. J. et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 93, 043121 (2008).

Tinten, K. S. et al. Dynamics of ultrafast phase changes in amorphous GeSb films. Phys. Rev. Lett. 81, 3679 (1998).

Findchips, https://www.findchips.com/parametric/Diodes/Varactors (2019).

Qin, S., Xu, Q. & Wang, Y. E. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Tech. 62, 2260–2272 (2014).

Wang, Y. E. Time-varying transmission lines (TVTL)—a new pathway to non-reciprocal and intelligent RF front-ends. in IEEE Radio and Wireless Symposium, 148–150 (2014).

Brysev, A. P., Krutyanskii, L. M. & Preobrazhenskii, V. L. Wave phase conjugation of ultrasonic beams. Phys.-Uspekhi 41, 793–805 (1998).

Chen, Z. et al. A tunable acoustic metamaterial with double-negativity driven by electromagnets. Sci. Rep. 6, 30254 (2016).

Popa, B.-I., Shinde, D., Konneker, A. & Cummer, S. A. Active acoustic metamaterials reconfigurable in real time. Phys. Rev. B 91, 220303(R) (2015).

Airoldi, L. & Ruzzene, M. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. N. J. Phys. 13, 113010 (2011).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem