- -

COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sepúlveda, Alicia es_ES
dc.contributor.author Periñán-Pascual, Carlos es_ES
dc.contributor.author Muñoz, Andrés es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2022-06-01T18:07:01Z
dc.date.available 2022-06-01T18:07:01Z
dc.date.issued 2021-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183030
dc.description.abstract [EN] The management of the COVID-19 pandemic has been shown to be critical for reducing its dramatic effects. Social sensing can analyse user-contributed data posted daily in social-media services, where participants are seen as Social Sensors. Individually, social sensors may provide noisy information. However, collectively, such opinion holders constitute a large critical mass dispersed everywhere and with an immediate capacity for information transfer. The main goal of this article is to present a novel methodological tool based on social sensing, called COVIDSensing. In particular, this application serves to provide actionable information in real time for the management of the socio-economic and health crisis caused by COVID-19. This tool dynamically identifies socio-economic problems of general interest through the analysis of people¿s opinions on social networks. Moreover, it tracks and predicts the evolution of the COVID-19 pandemic based on epidemiological figures together with the social perceptions towards the disease. This article presents the case study of Spain to illustrate the tool. es_ES
dc.description.sponsorship This work is derived from R&D project RTI2018-096384-B-I00, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe, by the Spanish Agencia Estatal de Investigación (grant number PID2020- 112827GB-I00/ AEI/10.13039/501100011033), and by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Proyectos AICO/2020, Spain, under Grant AICO/2020/302. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Social sensing es_ES
dc.subject COVID-19 es_ES
dc.subject Natural language processing es_ES
dc.subject Machine learning es_ES
dc.subject Data analysis es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification FILOLOGIA INGLESA es_ES
dc.title COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics10243157 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA CONTRATO RAMON Y CAJAL-CECILIA CANALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F302//FOG-NET: ARQUITECTURA BASADA EN FOG COMPUTING PARA LA OPTIMIZACIÓN DE LA MOMUNICACIONES EN ENTORNOS LOT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Lingüística Aplicada - Departament de Lingüística Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Sepúlveda, A.; Periñán-Pascual, C.; Muñoz, A.; Martínez-España, R.; Hernández-Orallo, E.; Cecilia-Canales, JM. (2021). COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis. Electronics. 10(24):1-17. https://doi.org/10.3390/electronics10243157 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics10243157 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\452198 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem