dc.contributor.author |
Sepúlveda, Alicia
|
es_ES |
dc.contributor.author |
Periñán-Pascual, Carlos
|
es_ES |
dc.contributor.author |
Muñoz, Andrés
|
es_ES |
dc.contributor.author |
Martínez-España, Raquel
|
es_ES |
dc.contributor.author |
Hernández-Orallo, Enrique
|
es_ES |
dc.contributor.author |
Cecilia-Canales, José María
|
es_ES |
dc.date.accessioned |
2022-06-01T18:07:01Z |
|
dc.date.available |
2022-06-01T18:07:01Z |
|
dc.date.issued |
2021-12 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/183030 |
|
dc.description.abstract |
[EN] The management of the COVID-19 pandemic has been shown to be critical for reducing its dramatic effects. Social sensing can analyse user-contributed data posted daily in social-media services, where participants are seen as Social Sensors. Individually, social sensors may provide noisy information. However, collectively, such opinion holders constitute a large critical mass dispersed everywhere and with an immediate capacity for information transfer. The main goal of this article is to present a novel methodological tool based on social sensing, called COVIDSensing. In particular, this application serves to provide actionable information in real time for the management of the socio-economic and health crisis caused by COVID-19. This tool dynamically identifies socio-economic problems of general interest through the analysis of people¿s opinions on social networks. Moreover, it tracks and predicts the evolution of the COVID-19 pandemic based on epidemiological figures together with the social perceptions towards the disease. This article presents the case study of Spain to illustrate the tool. |
es_ES |
dc.description.sponsorship |
This work is derived from R&D project RTI2018-096384-B-I00, as well as the Ramon y
Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033 and ERDF A way
of making Europe, by the Spanish Agencia Estatal de Investigación (grant number PID2020-
112827GB-I00/ AEI/10.13039/501100011033), and by the Conselleria de Innovación, Universidades,
Ciencia y Sociedad Digital, Proyectos AICO/2020, Spain, under Grant AICO/2020/302. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Electronics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Social sensing |
es_ES |
dc.subject |
COVID-19 |
es_ES |
dc.subject |
Natural language processing |
es_ES |
dc.subject |
Machine learning |
es_ES |
dc.subject |
Data analysis |
es_ES |
dc.subject.classification |
ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES |
es_ES |
dc.subject.classification |
FILOLOGIA INGLESA |
es_ES |
dc.title |
COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/electronics10243157 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA CONTRATO RAMON Y CAJAL-CECILIA CANALES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F302//FOG-NET: ARQUITECTURA BASADA EN FOG COMPUTING PARA LA OPTIMIZACIÓN DE LA MOMUNICACIONES EN ENTORNOS LOT/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Lingüística Aplicada - Departament de Lingüística Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors |
es_ES |
dc.description.bibliographicCitation |
Sepúlveda, A.; Periñán-Pascual, C.; Muñoz, A.; Martínez-España, R.; Hernández-Orallo, E.; Cecilia-Canales, JM. (2021). COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis. Electronics. 10(24):1-17. https://doi.org/10.3390/electronics10243157 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/electronics10243157 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
17 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
10 |
es_ES |
dc.description.issue |
24 |
es_ES |
dc.identifier.eissn |
2079-9292 |
es_ES |
dc.relation.pasarela |
S\452198 |
es_ES |
dc.contributor.funder |
GENERALITAT VALENCIANA |
es_ES |
dc.contributor.funder |
AGENCIA ESTATAL DE INVESTIGACION |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |