Mostrar el registro sencillo del ítem
dc.contributor.author | Sepúlveda, Alicia | es_ES |
dc.contributor.author | Periñán-Pascual, Carlos | es_ES |
dc.contributor.author | Muñoz, Andrés | es_ES |
dc.contributor.author | Martínez-España, Raquel | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.date.accessioned | 2022-06-01T18:07:01Z | |
dc.date.available | 2022-06-01T18:07:01Z | |
dc.date.issued | 2021-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183030 | |
dc.description.abstract | [EN] The management of the COVID-19 pandemic has been shown to be critical for reducing its dramatic effects. Social sensing can analyse user-contributed data posted daily in social-media services, where participants are seen as Social Sensors. Individually, social sensors may provide noisy information. However, collectively, such opinion holders constitute a large critical mass dispersed everywhere and with an immediate capacity for information transfer. The main goal of this article is to present a novel methodological tool based on social sensing, called COVIDSensing. In particular, this application serves to provide actionable information in real time for the management of the socio-economic and health crisis caused by COVID-19. This tool dynamically identifies socio-economic problems of general interest through the analysis of people¿s opinions on social networks. Moreover, it tracks and predicts the evolution of the COVID-19 pandemic based on epidemiological figures together with the social perceptions towards the disease. This article presents the case study of Spain to illustrate the tool. | es_ES |
dc.description.sponsorship | This work is derived from R&D project RTI2018-096384-B-I00, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe, by the Spanish Agencia Estatal de Investigación (grant number PID2020- 112827GB-I00/ AEI/10.13039/501100011033), and by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Proyectos AICO/2020, Spain, under Grant AICO/2020/302. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Social sensing | es_ES |
dc.subject | COVID-19 | es_ES |
dc.subject | Natural language processing | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Data analysis | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | FILOLOGIA INGLESA | es_ES |
dc.title | COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics10243157 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA CONTRATO RAMON Y CAJAL-CECILIA CANALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F302//FOG-NET: ARQUITECTURA BASADA EN FOG COMPUTING PARA LA OPTIMIZACIÓN DE LA MOMUNICACIONES EN ENTORNOS LOT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Lingüística Aplicada - Departament de Lingüística Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Sepúlveda, A.; Periñán-Pascual, C.; Muñoz, A.; Martínez-España, R.; Hernández-Orallo, E.; Cecilia-Canales, JM. (2021). COVIDSensing: Social Sensing strategy for the management of the COVID-19 crisis. Electronics. 10(24):1-17. https://doi.org/10.3390/electronics10243157 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics10243157 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\452198 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |