- -

Machine learning for optimal selection of sparse triangular system solvers on GPUs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Machine learning for optimal selection of sparse triangular system solvers on GPUs

Show full item record

Dufrechou, E.; Ezzatti, P.; Freire, M.; Quintana-Ortí, ES. (2021). Machine learning for optimal selection of sparse triangular system solvers on GPUs. Journal of Parallel and Distributed Computing. 158:47-55. https://doi.org/10.1016/j.jpdc.2021.07.013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183097

Files in this item

Item Metadata

Title: Machine learning for optimal selection of sparse triangular system solvers on GPUs
Author: Dufrechou, Ernesto Ezzatti, Pablo Freire, Manuel Quintana-Ortí, Enrique S.
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Embargo end date: 2023-12-31
Abstract:
[EN] Many numerical algorithms for science and engineering applications require the solution of sparse triangular linear systems (sptrsv) as their most costly stage. For this reason, considerable research has been dedicated ...[+]
Subjects: Graphics processors , Sparse triangular linear systems , High performance , Machine learning
Copyrigths: Embargado
Source:
Journal of Parallel and Distributed Computing. (issn: 0743-7315 )
DOI: 10.1016/j.jpdc.2021.07.013
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jpdc.2021.07.013
Thanks:
The researchers from UdelaRwere supported by PEDECIBA
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record