- -

Machine learning for optimal selection of sparse triangular system solvers on GPUs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine learning for optimal selection of sparse triangular system solvers on GPUs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dufrechou, Ernesto es_ES
dc.contributor.author Ezzatti, Pablo es_ES
dc.contributor.author Freire, Manuel es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2022-06-06T18:02:42Z
dc.date.available 2022-06-06T18:02:42Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 0743-7315 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183097
dc.description.abstract [EN] Many numerical algorithms for science and engineering applications require the solution of sparse triangular linear systems (sptrsv) as their most costly stage. For this reason, considerable research has been dedicated to produce efficient implementations for almost all high performance computing platforms. In the case of graphics processing units (GPUs), there are several strategies to perform this operation, which translate into a handful of different routines. In general, it is difficult to establish a priori which is the best routine for a given problem, and thus, an automatic procedure able to select the best solver for each matrix can entail large performance benefits. This work extends a previous effort, in which we relied on machine learning techniques to predict the bestsptrsvroutine for each matrix, by improving both the accuracy and the speed of the selection procedure. Specifically, we focus on the most efficient machine learning techniques regarding the speed of their training and prediction stages; evaluate the artificial generation of sparse matrices to expand our dataset; and propose heuristics to compute approximations of some expensive features. The experimental results show that we can strongly improve the runtime of our procedure without compromising the quality results. (C) 2021 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship The researchers from UdelaRwere supported by PEDECIBA es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Parallel and Distributed Computing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Graphics processors es_ES
dc.subject Sparse triangular linear systems es_ES
dc.subject High performance es_ES
dc.subject Machine learning es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Machine learning for optimal selection of sparse triangular system solvers on GPUs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jpdc.2021.07.013 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Dufrechou, E.; Ezzatti, P.; Freire, M.; Quintana-Ortí, ES. (2021). Machine learning for optimal selection of sparse triangular system solvers on GPUs. Journal of Parallel and Distributed Computing. 158:47-55. https://doi.org/10.1016/j.jpdc.2021.07.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jpdc.2021.07.013 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 55 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 158 es_ES
dc.relation.pasarela S\448156 es_ES
dc.contributor.funder Ministerio de Educación y Cultura, Uruguay es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem