- -

Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Girbes-Juan, Vicent es_ES
dc.contributor.author Armesto, Leopoldo es_ES
dc.contributor.author Hernandez-Ferrandiz, Daniel es_ES
dc.contributor.author Dols Ruiz, Juan Francisco es_ES
dc.contributor.author Sala, Antonio es_ES
dc.date.accessioned 2022-06-08T18:06:11Z
dc.date.available 2022-06-08T18:06:11Z
dc.date.issued 2021-08-04 es_ES
dc.identifier.issn 0018-9545 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183136
dc.description.abstract [EN] In heavy-duty vehicles, multiple signals are available to estimate the vehicle's kinematics, such as Inertial Measurement Unit (IMU), Global Positioning System (GPS) and linear and angular speed readings from wheel tachometers on the internal Controller Area Network (CAN). These signals have different noise variance, bandwidth and sampling rate (being the latter, possibly, irregular). In this paper we present a non-linear sensor fusion algorithm allowing asynchronous sampling and non-causal smoothing. It is applied to achieve accuracy improvements when incorporating odometry measurements from CAN bus to standard GPS+IMU kinematic estimation, as well as the robustness against missing data. Our results show that this asynchronous multi-sensor (GPS+IMU+CAN-based odometry) fusion is advantageous in low-speed manoeuvres, improving accuracy and robustness to missing data, thanks to non-causal filtering. The proposed algorithm is based on Extended Kalman Filter and Smoother, with exponential discretization of continuous-time stochastic differential equations, in order to process measurements at arbitrary time instants; it can provide data to subsequent processing steps at arbitrary time instants, not necessarily coincident with the original measurement ones. Given the extra information available in the smoothing case, its estimation performance is less sensitive to the noise-variance parameter setting, compared to causal filtering. Working Matlab code is provided at the end of this work. es_ES
dc.description.sponsorship This research was supported in part by the Agencia Espanola de Investigacion (European Union) under Grants PID2020-116585GB-I00 and PID2020-118071GB-I00, and in part by the Generalitat Valenciana under Grant GV/2021/074. The review of this article was coordinated by Dr. Sohel Anwar. (Corresponding author: Vicent Girbes-Juan.) es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Vehicular Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Asynchronous sampled-data es_ES
dc.subject Extended kalman filter es_ES
dc.subject Heavy-duty vehicles es_ES
dc.subject Rauch-tung-striebel smoother es_ES
dc.subject SAE J1939 es_ES
dc.subject Sensor fusion es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TVT.2021.3101515 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116585GB-I00/ES/APRENDIZAJE, CONTROL OPTIMO Y PLANIFICACION BAJO INCERTIDUMBRE EN APLICACIONES INDUSTRIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2021%2F074/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118071GB-I00/ES/APRENDIZAJE AUTOMATICO BIOINSPIRADO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DPI2016-81002-R//CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Girbes-Juan, V.; Armesto, L.; Hernandez-Ferrandiz, D.; Dols Ruiz, JF.; Sala, A. (2021). Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles. IEEE Transactions on Vehicular Technology. 70(9):8617-8626. https://doi.org/10.1109/TVT.2021.3101515 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TVT.2021.3101515 es_ES
dc.description.upvformatpinicio 8617 es_ES
dc.description.upvformatpfin 8626 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\446595 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem