Mostrar el registro sencillo del ítem
dc.contributor.author | Girbes-Juan, Vicent | es_ES |
dc.contributor.author | Armesto, Leopoldo | es_ES |
dc.contributor.author | Hernandez-Ferrandiz, Daniel | es_ES |
dc.contributor.author | Dols Ruiz, Juan Francisco | es_ES |
dc.contributor.author | Sala, Antonio | es_ES |
dc.date.accessioned | 2022-06-08T18:06:11Z | |
dc.date.available | 2022-06-08T18:06:11Z | |
dc.date.issued | 2021-08-04 | es_ES |
dc.identifier.issn | 0018-9545 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183136 | |
dc.description.abstract | [EN] In heavy-duty vehicles, multiple signals are available to estimate the vehicle's kinematics, such as Inertial Measurement Unit (IMU), Global Positioning System (GPS) and linear and angular speed readings from wheel tachometers on the internal Controller Area Network (CAN). These signals have different noise variance, bandwidth and sampling rate (being the latter, possibly, irregular). In this paper we present a non-linear sensor fusion algorithm allowing asynchronous sampling and non-causal smoothing. It is applied to achieve accuracy improvements when incorporating odometry measurements from CAN bus to standard GPS+IMU kinematic estimation, as well as the robustness against missing data. Our results show that this asynchronous multi-sensor (GPS+IMU+CAN-based odometry) fusion is advantageous in low-speed manoeuvres, improving accuracy and robustness to missing data, thanks to non-causal filtering. The proposed algorithm is based on Extended Kalman Filter and Smoother, with exponential discretization of continuous-time stochastic differential equations, in order to process measurements at arbitrary time instants; it can provide data to subsequent processing steps at arbitrary time instants, not necessarily coincident with the original measurement ones. Given the extra information available in the smoothing case, its estimation performance is less sensitive to the noise-variance parameter setting, compared to causal filtering. Working Matlab code is provided at the end of this work. | es_ES |
dc.description.sponsorship | This research was supported in part by the Agencia Espanola de Investigacion (European Union) under Grants PID2020-116585GB-I00 and PID2020-118071GB-I00, and in part by the Generalitat Valenciana under Grant GV/2021/074. The review of this article was coordinated by Dr. Sohel Anwar. (Corresponding author: Vicent Girbes-Juan.) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Vehicular Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Asynchronous sampled-data | es_ES |
dc.subject | Extended kalman filter | es_ES |
dc.subject | Heavy-duty vehicles | es_ES |
dc.subject | Rauch-tung-striebel smoother | es_ES |
dc.subject | SAE J1939 | es_ES |
dc.subject | Sensor fusion | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TVT.2021.3101515 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116585GB-I00/ES/APRENDIZAJE, CONTROL OPTIMO Y PLANIFICACION BAJO INCERTIDUMBRE EN APLICACIONES INDUSTRIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2021%2F074/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118071GB-I00/ES/APRENDIZAJE AUTOMATICO BIOINSPIRADO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//DPI2016-81002-R//CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Girbes-Juan, V.; Armesto, L.; Hernandez-Ferrandiz, D.; Dols Ruiz, JF.; Sala, A. (2021). Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles. IEEE Transactions on Vehicular Technology. 70(9):8617-8626. https://doi.org/10.1109/TVT.2021.3101515 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TVT.2021.3101515 | es_ES |
dc.description.upvformatpinicio | 8617 | es_ES |
dc.description.upvformatpfin | 8626 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\446595 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |