- -

A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study

Mostrar el registro completo del ítem

Gonçalves, A.; Montoya, MF.; Llorens Rodríguez, R.; Bermúdez I Badia, S. (2021). A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study. Virtual Reality. 1-9. https://doi.org/10.1007/s10055-021-00521-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183531

Ficheros en el ítem

Metadatos del ítem

Título: A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study
Autor: Gonçalves, A. Montoya, M. F. Llorens Rodríguez, Roberto Bermúdez i Badia, S.
Fecha difusión:
Resumen:
[EN] Balance disorders can have substantial adverse implications on the performance of daily activities and lead to an increased risk of falls, which often have severe negative consequences for older adults. Quantitative ...[+]
Palabras clave: Virtual reality , Balance assessment , Posturography , Ecological validity , Visual motion
Derechos de uso: Reserva de todos los derechos
Fuente:
Virtual Reality. (issn: 1359-4338 )
DOI: 10.1007/s10055-021-00521-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10055-021-00521-6
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/5665-PICT/CMUP-ERI/HCI%2F0046%2F2013/PT/Augmented Human Assistance/AHA
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//LENI INFRAESTRUCTURAS/
info:eu-repo/grantAgreement/FCT/ 6817-DCRRNI ID/UID%2FCEC%2F04516%2F2019/PT/Laboratory for Computer Science and Informatics/NOVA-LINCS
info:eu-repo/grantAgreement/Fundació La Marató de TV3//201701-10/
Agradecimientos:
This work was supported by the Fundacao para a Ciencia e Tecnologia through the AHA project (CMUPERI/HCI/0046/2013), and NOVA-LINCS (UID/CEC/04516/2019), by the INTERREG program through the MACBIOIDI project (MAC/1.1.b/098), ...[+]
Tipo: Artículo

References

Allum JH, Gresty M, Keshner E, Shupert C (1997) The control of head movements during human balance corrections. J Vestib Res 7:189–218

Bermúdez i Badia S, Fluet GG, Llorens R, Deutsch JE (2016) Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence. In: Reinkensmeyer DJ, Dietz V (eds) Neurorehabilitation technology. Springer, Cham, pp 573–603. https://doi.org/10.1007/978-3-319-28603-7_28

Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP (2004) Reliance on visual information after stroke. Part I: balance on dynamic posturography. Arch Phys Med Rehabil 85:268–273. https://doi.org/10.1016/j.apmr.2003.06.017 [+]
Allum JH, Gresty M, Keshner E, Shupert C (1997) The control of head movements during human balance corrections. J Vestib Res 7:189–218

Bermúdez i Badia S, Fluet GG, Llorens R, Deutsch JE (2016) Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence. In: Reinkensmeyer DJ, Dietz V (eds) Neurorehabilitation technology. Springer, Cham, pp 573–603. https://doi.org/10.1007/978-3-319-28603-7_28

Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP (2004) Reliance on visual information after stroke. Part I: balance on dynamic posturography. Arch Phys Med Rehabil 85:268–273. https://doi.org/10.1016/j.apmr.2003.06.017

Borrego A, Latorre J, Llorens R, Alcañiz M, Noé E (2016) Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J Neuroeng Rehabil 13:68. https://doi.org/10.1186/s12984-016-0174-1

Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40:36–43. https://doi.org/10.1109/MC.2007.257

Bronfenbrenner U (1977) Toward an experimental ecology of human development. Am Psychol 32:513–531. https://doi.org/10.1037/0003-066X.32.7.513

Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn. Wiley, Hoboken

Claesson IM, Grooten WJ, Lökk J, Ståhle A (2017) Assessing postural balance in early Parkinson’s Disease—validity of the BDL balance scale. Physiother Theory Pract 33:490–496. https://doi.org/10.1080/09593985.2017.1318424

Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (2010) Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31:307–310. https://doi.org/10.1016/j.gaitpost.2009.11.012

Clark RA, McGough R, Paterson K (2011) Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 34:288–291. https://doi.org/10.1016/j.gaitpost.2011.04.010

Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. Commun ACM 35:64–72. https://doi.org/10.1145/129888.129892

Elion O, Sela I, Bahat Y, Siev-Ner I, Weiss PL, Karni A (2015) Balance maintenance as an acquired motor skill: delayed gains and robust retention after a single session of training in a virtual environment. Brain Res 1609:54–62. https://doi.org/10.1016/j.brainres.2015.03.020

Giboin L-S, Gruber M, Kramer A (2015) Task-specificity of balance training. Hum Mov Sci 44:22–31. https://doi.org/10.1016/j.humov.2015.08.012

Gonçalves A, Bermúdez S (2018) KAVE: building kinect based CAVE automatic virtual environments, methods for surround-screen projection management, motion parallax and full-body interaction support. Proc ACM Hum-Comput Interact 2:10:1-10:15. https://doi.org/10.1145/3229092

Gonçalves A, Borrego A, Latorre J, Llorens R, Bermúdez i Badia S (2021) Evaluation of the tracking accuracy, sense of presence, and cybersickness of a low-cost virtual reality surround-screen projection systems powered by the KAVE open-source software. IEEE Trans Vis Comput Graph (accepted)

Horak FB, Wrisley DM, Frank J (2009) The Balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther 89:484–498. https://doi.org/10.2522/ptj.20080071

Huurnink A, Fransz DP, Kingma I, van Dieën JH (2013) Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech 46:1392–1395. https://doi.org/10.1016/j.jbiomech.2013.02.018

Jerald J (2015) The VR book: human-centered design for virtual reality. Morgan & Claypool, New York

Llorens R, Latorre J, Noé E, Keshner EA (2016) Posturography using the Wii Balance BoardTM: a feasibility study with healthy adults and adults post-stroke. Gait Posture 43:228–232. https://doi.org/10.1016/j.gaitpost.2015.10.002

Lord SR, Clark RD (1996) Simple physiological and clinical tests for the accurate prediction of falling in older people. GER 42:199–203. https://doi.org/10.1159/000213793

Mancini M, Horak FB (2010) The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehabil Med 46:239–248

Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Kubota K (2012) Cortical control of postural balance in patients with hemiplegic stroke. NeuroReport 23:314–319. https://doi.org/10.1097/WNR.0b013e328351757b

Morel M, Bideau B, Lardy J, Kulpa R (2015) Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol Clin/Clin Neurophysiol Spec Issue Bal Gait 45:315–326. https://doi.org/10.1016/j.neucli.2015.09.007

Naumann T, Kindermann S, Joch M, Munzert J, Reiser M (2015) No transfer between conditions in balance training regimes relying on tasks with different postural demands: specificity effects of two different serious games. Gait Posture 41:774–779. https://doi.org/10.1016/j.gaitpost.2015.02.003

Navalón N, Verdecho I, Llorens R, Colomer C, Sanchez-Leiva C, Martinez-Crespo G, Moliner B, Ferri J, Noé E (2014) Progression of posturographic findings after acquired brain injury. Brain Inj 28:1417–1424. https://doi.org/10.3109/02699052.2014.917200

Pardasaney PK, Slavin MD, Wagenaar RC, Latham NK, Ni P, Jette AM (2013) Conceptual limitations of balance measures for community-dwelling older adults. Phys Ther 93:1351–1368. https://doi.org/10.2522/ptj.20130028

Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Age 35:ii37–ii41. https://doi.org/10.1093/ageing/afl084

Salzman B (2010) Gait and balance disorders in older adults. AFP 82:61–68

Sherman WR, Craig AB (2018) Understanding virtual reality: interface, application, and design. Morgan Kaufmann

Slater M, Linakis V, Usoh M, Kooper R, Street G (1996) Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. Presented at the ACM virtual reality software and technology (VRST, pp. 163–172).

Slater M, Steed A, Usoh M (1995) The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Virtual environments '95, eurographics. Springer, Vienna, pp 135–148. https://doi.org/10.1007/978-3-7091-9433-1_12

Slater M, Wilbur S (1997) A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoper Virtual Environ 6:603–616. https://doi.org/10.1162/pres.1997.6.6.603

Teresa P, Ana F, Bermudez i Badia S (2019) Reh@City v2.0: a comprehensive virtual reality cognitive training system based on personalized and adaptive simulations of activities of daily living. Presented at the The Experiment@ International Conference 2019 (exp. at'19), IEEE, Funchal, Portugal

Tyson SF, Connell LA (2009) How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin Rehabil. https://doi.org/10.1177/0269215509335018

Visser JE, Carpenter MG, van der Kooij H, Bloem BR (2008) The clinical utility of posturography. Clin Neurophysiol 119:2424–2436. https://doi.org/10.1016/j.clinph.2008.07.220

Witmer BG, Jerome CJ, Singer MJ (2005) The factor structure of the presence questionnaire. Presence Teleoper Virtual Environ 14:298–312. https://doi.org/10.1162/105474605323384654

Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686

Yelnik AP, Kassouha A, Bonan IV, Leman MC, Jacq C, Vicaut E, Colle FM (2006) Postural visual dependence after recent stroke: assessment by optokinetic stimulation. Gait Posture 24:262–269. https://doi.org/10.1016/j.gaitpost.2005.09.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem