- -

Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques

Mostrar el registro completo del ítem

Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ.; Ivorra, E.; Llopis, S.; Martínez, R.; Martorell, P. (2021). Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Scientific Reports. 11(1):1-11. https://doi.org/10.1038/s41598-021-91898-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183627

Ficheros en el ítem

Metadatos del ítem

Título: Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques
Autor: Puchalt-Rodríguez, Joan Carles Sánchez Salmerón, Antonio José Ivorra, Eugenio Llopis, Silvia Martínez, Roberto Martorell, Patricia
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Traditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21-25 ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-021-91898-6
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-021-91898-6
Coste APC: 1690
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/
info:eu-repo/grantAgreement/UPV//20170020-UPV/
Agradecimientos:
This study was also supported by CDTI agency of the Spanish Ministry of Economy and Competitiveness under the CIEN project SMARTFOODS, Universitat Politecnica de Valencia under the project 20170020-UPV, Plan Nacional de ...[+]
Tipo: Artículo

References

Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015).

Zariwala, H. A., Miller, A. C., Faumont, S. & Lockery, S. R. Step response analysis of thermotaxis in Caenorhabditis elegans. J. Neurosci. 23, 4369–4377 (2003).

Rankin, C. H. & Broster, B. S. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106, 239–249. https://doi.org/10.1037//0735-7044.106.2.239 (1992). [+]
Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015).

Zariwala, H. A., Miller, A. C., Faumont, S. & Lockery, S. R. Step response analysis of thermotaxis in Caenorhabditis elegans. J. Neurosci. 23, 4369–4377 (2003).

Rankin, C. H. & Broster, B. S. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106, 239–249. https://doi.org/10.1037//0735-7044.106.2.239 (1992).

Edwards, S. L. et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. 6, 1715–1729. https://doi.org/10.1371/journal.pbio.0060198 (2008).

Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 72, 4061–4065. https://doi.org/10.1073/pnas.72.10.4061 (1975).

Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

Kenyon, C. J. The genetics of ageing. Nature 464, 504 (2010).

Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255 (2000).

Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297. https://doi.org/10.1038/35012693 (2000).

Amrit, F. R. G., Ratnappan, R., Keith, S. A. & Ghazi, A. The C. elegans lifespan assay toolkit. Methods 68, 465–475. https://doi.org/10.1016/j.ymeth.2014.04.002 (2014).

Klass, M. R. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429. https://doi.org/10.1016/0047-6374(77)90043-4 (1977).

Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–70. https://doi.org/10.1038/nmeth.2475 (2013) (NIHMS150003).

Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLifehttps://doi.org/10.7554/eLife.26652 (2017).

Kralchevsky, P. A. & Nagayama, K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145–192. https://doi.org/10.1016/s0001-8686(99)00016-0 (2000).

Cheon, Y., Hwang, H. & Kim, K. Plasticity of pheromone-mediated avoidance behavior in C. elegans. J. Neurogenet. 34, 420–426. https://doi.org/10.1080/01677063.2020.1802723 (2020).

Yoshimizu, T., Shidara, H., Ashida, K., Hotta, K. & Oka, K. Effect of interactions among individuals on the chemotaxis behaviours of Caenorhabditis elegans. J. Exp. Biol. 221, 66. https://doi.org/10.1242/jeb.182790 (2018).

Park, S. et al. Enhanced Caenorhabditis elegans Locomotion in a Structured Microfluidic Environment. PLoS ONE 3, 1–5. https://doi.org/10.1371/journal.pone.0002550 (2008).

Lockery, S. R. et al. Artificial Dirt: Microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143. https://doi.org/10.1152/jn.91327.2007 (2008).

Rahman, M. et al. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 10, 16190. https://doi.org/10.1038/s41598-020-73002-6 (2020).

Cronin, C. J. et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet.https://doi.org/10.1186/1471-2156-6-5 (2005).

Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592-U112. https://doi.org/10.1038/nmeth.1625 (2011).

Xian, B. et al. WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12, 398–409. https://doi.org/10.1111/acel.12063 (2013).

Jung, S. K., Aleman-Meza, B., Riepe, C. & Zhong, W. QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS ONEhttps://doi.org/10.1371/journal.pone.0084830 (2014).

Restif, C. et al. CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput. Biol. 10, 66. https://doi.org/10.1371/journal.pcbi.1003702 (2014).

Kuo, W.-J. & Chuang, H.-S. Development of an image-based algorithm for the motility characterizations of the nematode Caenorhabditis elegans. In 1ST Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, vol. 47 of IFMBE Proceedings (eds Su, F. C. et al.) 107–110 (Springer, 2015). https://doi.org/10.1007/978-3-319-12262-5_30.

Wählby, C. et al. An image analysis toolbox for high-throughput C. elegans assays. Nat. Methods 9, 714–716. https://doi.org/10.1038/nmeth.1984 (2012).

Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145. https://doi.org/10.1016/j.mad.2004.09.010 (2005).

Gill, M. S., Olsen, A., Sampayo, J. N. & Lithgow, G. J. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35, 558–565. https://doi.org/10.1016/S0891-5849(03)00328-9 (2003).

Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONEhttps://doi.org/10.1371/journal.pone.0033483 (2012).

Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard petri plates. PLoS ONE 14, e0215548 (2019).

Puchalt, J. C. et al. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Sci. Rep. 10, 8729. https://doi.org/10.1038/s41598-020-65619-4 (2020).

De Magalhaes Filho, C. D. et al. Visible light reduces C. elegans longevity. Nat. Commun. 9, 66. https://doi.org/10.1038/s41467-018-02934-5 (2018).

Hahm, J.-H. et al. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 6, 66. https://doi.org/10.1038/ncomms9919 (2015).

Aitlhadj, L. & Stürzenbaum, S. R. The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364–365. https://doi.org/10.1016/j.mad.2010.03.002 (2010).

Hosono, R. Sterilization and growth inhibition of Caenorhabditis elegans by 5-fluorodeoxyuridine. Exp. Gerontol. 13, 369–373. https://doi.org/10.1016/0531-5565(78)90047-5 (1978).

Chen, W. et al. Segmenting microscopy images of multi-well plates based on image contrast. Microsc. Microanal. 23, 932–937. https://doi.org/10.1017/S1431927617012375 (2017).

Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239. https://doi.org/10.1016/j.cell.2013.02.035 (2013).

Onken, B. & Driscoll, M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, 1–13. https://doi.org/10.1371/journal.pone.0008758 (2010).

Luyten, W. et al. Ageing with elegans: A research proposal to map healthspan pathways. Biogerontology 6, 1–12. https://doi.org/10.1007/s10522-016-9644-x (2016).

Lin, S. C., Lin, M. H., Horvath, P., Reddy, K. L. & Storti, R. V. PDP1, a novel Drosophila PAR domain bZIP transcription factor expressed in developing mesoderm, endoderm and ectoderm, is a transcriptional regulator of somatic muscle genes. Development 124, 4685–4696 (1997).

Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999. https://doi.org/10.1038/40194 (1997).

Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464. https://doi.org/10.1038/366461a0 (1993).

Chen, J. et al. Kinetochore inactivation by expression of a repressive mRNA. eLife 6, e27417. https://doi.org/10.7554/eLife.27417 (2017).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem