- -

Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puchalt-Rodríguez, Joan Carles es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.contributor.author Ivorra, Eugenio es_ES
dc.contributor.author Llopis, Silvia es_ES
dc.contributor.author Martínez, Roberto es_ES
dc.contributor.author Martorell, Patricia es_ES
dc.date.accessioned 2022-06-27T18:06:54Z
dc.date.available 2022-06-27T18:06:54Z
dc.date.issued 2021-06-10 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183627
dc.description.abstract [EN] Traditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21-25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour. es_ES
dc.description.sponsorship This study was also supported by CDTI agency of the Spanish Ministry of Economy and Competitiveness under the CIEN project SMARTFOODS, Universitat Politecnica de Valencia under the project 20170020-UPV, Plan Nacional de I+D under the project RTI2018-094312-B-I00 and by the European FEDER funds. ADM Nutrition, Biopolis SL and Archer Daniels Midland provided support in the form of salaries for authors S. Llopis, R. Martinez, and P. Martorell. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-021-91898-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20170020-UPV/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ.; Ivorra, E.; Llopis, S.; Martínez, R.; Martorell, P. (2021). Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Scientific Reports. 11(1):1-11. https://doi.org/10.1038/s41598-021-91898-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-021-91898-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34112931 es_ES
dc.identifier.pmcid PMC8192789 es_ES
dc.relation.pasarela S\439994 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.description.references Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015). es_ES
dc.description.references Zariwala, H. A., Miller, A. C., Faumont, S. & Lockery, S. R. Step response analysis of thermotaxis in Caenorhabditis elegans. J. Neurosci. 23, 4369–4377 (2003). es_ES
dc.description.references Rankin, C. H. & Broster, B. S. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106, 239–249. https://doi.org/10.1037//0735-7044.106.2.239 (1992). es_ES
dc.description.references Edwards, S. L. et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. 6, 1715–1729. https://doi.org/10.1371/journal.pbio.0060198 (2008). es_ES
dc.description.references Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 72, 4061–4065. https://doi.org/10.1073/pnas.72.10.4061 (1975). es_ES
dc.description.references Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). es_ES
dc.description.references Kenyon, C. J. The genetics of ageing. Nature 464, 504 (2010). es_ES
dc.description.references Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255 (2000). es_ES
dc.description.references Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297. https://doi.org/10.1038/35012693 (2000). es_ES
dc.description.references Amrit, F. R. G., Ratnappan, R., Keith, S. A. & Ghazi, A. The C. elegans lifespan assay toolkit. Methods 68, 465–475. https://doi.org/10.1016/j.ymeth.2014.04.002 (2014). es_ES
dc.description.references Klass, M. R. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429. https://doi.org/10.1016/0047-6374(77)90043-4 (1977). es_ES
dc.description.references Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–70. https://doi.org/10.1038/nmeth.2475 (2013) (NIHMS150003). es_ES
dc.description.references Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLifehttps://doi.org/10.7554/eLife.26652 (2017). es_ES
dc.description.references Kralchevsky, P. A. & Nagayama, K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145–192. https://doi.org/10.1016/s0001-8686(99)00016-0 (2000). es_ES
dc.description.references Cheon, Y., Hwang, H. & Kim, K. Plasticity of pheromone-mediated avoidance behavior in C. elegans. J. Neurogenet. 34, 420–426. https://doi.org/10.1080/01677063.2020.1802723 (2020). es_ES
dc.description.references Yoshimizu, T., Shidara, H., Ashida, K., Hotta, K. & Oka, K. Effect of interactions among individuals on the chemotaxis behaviours of Caenorhabditis elegans. J. Exp. Biol. 221, 66. https://doi.org/10.1242/jeb.182790 (2018). es_ES
dc.description.references Park, S. et al. Enhanced Caenorhabditis elegans Locomotion in a Structured Microfluidic Environment. PLoS ONE 3, 1–5. https://doi.org/10.1371/journal.pone.0002550 (2008). es_ES
dc.description.references Lockery, S. R. et al. Artificial Dirt: Microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143. https://doi.org/10.1152/jn.91327.2007 (2008). es_ES
dc.description.references Rahman, M. et al. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 10, 16190. https://doi.org/10.1038/s41598-020-73002-6 (2020). es_ES
dc.description.references Cronin, C. J. et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet.https://doi.org/10.1186/1471-2156-6-5 (2005). es_ES
dc.description.references Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592-U112. https://doi.org/10.1038/nmeth.1625 (2011). es_ES
dc.description.references Xian, B. et al. WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12, 398–409. https://doi.org/10.1111/acel.12063 (2013). es_ES
dc.description.references Jung, S. K., Aleman-Meza, B., Riepe, C. & Zhong, W. QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS ONEhttps://doi.org/10.1371/journal.pone.0084830 (2014). es_ES
dc.description.references Restif, C. et al. CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput. Biol. 10, 66. https://doi.org/10.1371/journal.pcbi.1003702 (2014). es_ES
dc.description.references Kuo, W.-J. & Chuang, H.-S. Development of an image-based algorithm for the motility characterizations of the nematode Caenorhabditis elegans. In 1ST Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, vol. 47 of IFMBE Proceedings (eds Su, F. C. et al.) 107–110 (Springer, 2015). https://doi.org/10.1007/978-3-319-12262-5_30. es_ES
dc.description.references Wählby, C. et al. An image analysis toolbox for high-throughput C. elegans assays. Nat. Methods 9, 714–716. https://doi.org/10.1038/nmeth.1984 (2012). es_ES
dc.description.references Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145. https://doi.org/10.1016/j.mad.2004.09.010 (2005). es_ES
dc.description.references Gill, M. S., Olsen, A., Sampayo, J. N. & Lithgow, G. J. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35, 558–565. https://doi.org/10.1016/S0891-5849(03)00328-9 (2003). es_ES
dc.description.references Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONEhttps://doi.org/10.1371/journal.pone.0033483 (2012). es_ES
dc.description.references Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard petri plates. PLoS ONE 14, e0215548 (2019). es_ES
dc.description.references Puchalt, J. C. et al. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Sci. Rep. 10, 8729. https://doi.org/10.1038/s41598-020-65619-4 (2020). es_ES
dc.description.references De Magalhaes Filho, C. D. et al. Visible light reduces C. elegans longevity. Nat. Commun. 9, 66. https://doi.org/10.1038/s41467-018-02934-5 (2018). es_ES
dc.description.references Hahm, J.-H. et al. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 6, 66. https://doi.org/10.1038/ncomms9919 (2015). es_ES
dc.description.references Aitlhadj, L. & Stürzenbaum, S. R. The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364–365. https://doi.org/10.1016/j.mad.2010.03.002 (2010). es_ES
dc.description.references Hosono, R. Sterilization and growth inhibition of Caenorhabditis elegans by 5-fluorodeoxyuridine. Exp. Gerontol. 13, 369–373. https://doi.org/10.1016/0531-5565(78)90047-5 (1978). es_ES
dc.description.references Chen, W. et al. Segmenting microscopy images of multi-well plates based on image contrast. Microsc. Microanal. 23, 932–937. https://doi.org/10.1017/S1431927617012375 (2017). es_ES
dc.description.references Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239. https://doi.org/10.1016/j.cell.2013.02.035 (2013). es_ES
dc.description.references Onken, B. & Driscoll, M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, 1–13. https://doi.org/10.1371/journal.pone.0008758 (2010). es_ES
dc.description.references Luyten, W. et al. Ageing with elegans: A research proposal to map healthspan pathways. Biogerontology 6, 1–12. https://doi.org/10.1007/s10522-016-9644-x (2016). es_ES
dc.description.references Lin, S. C., Lin, M. H., Horvath, P., Reddy, K. L. & Storti, R. V. PDP1, a novel Drosophila PAR domain bZIP transcription factor expressed in developing mesoderm, endoderm and ectoderm, is a transcriptional regulator of somatic muscle genes. Development 124, 4685–4696 (1997). es_ES
dc.description.references Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999. https://doi.org/10.1038/40194 (1997). es_ES
dc.description.references Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464. https://doi.org/10.1038/366461a0 (1993). es_ES
dc.description.references Chen, J. et al. Kinetochore inactivation by expression of a repressive mRNA. eLife 6, e27417. https://doi.org/10.7554/eLife.27417 (2017). es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem