Omar del Tejo Catalá; Salvador Igual, I.; Perez-Benito, FJ.; Millan-Escriva, D.; Ortiz, V.; Llobet Azpitarte, R.; Perez-Cortes, J. (2021). Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients. IEEE Access. 9:42370-42383. https://doi.org/10.1109/ACCESS.2021.3065456
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183723
Title:
|
Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients
|
Author:
|
Omar del Tejo Catalá
Salvador Igual, Ismael
Perez-Benito, Francisco Javier
Millan-Escriva, David
ORTIZ, V.
Llobet Azpitarte, Rafael
Perez-Cortes, Juan-Carlos
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología de Informática - Institut Universitari Mixt de Tecnologia d'Informàtica
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Issued date:
|
|
Abstract:
|
[EN] Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that X-ray devices are already available in health centers and images are obtained immediately. Some datasets containing X-ray images with ...[+]
[EN] Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that X-ray devices are already available in health centers and images are obtained immediately. Some datasets containing X-ray images with cases (pneumonia or COVID-19) and controls have been made available to develop machine-learning-based methods to aid in diagnosing the disease. However, these datasets are mainly composed of different sources coming from pre-COVID-19 datasets and COVID-19 datasets. Particularly, we have detected a significant bias in some of the released datasets used to train and test diagnostic systems, which might imply that the results published are optimistic and may overestimate the actual predictive capacity of the techniques proposed. In this article, we analyze the existing bias in some commonly used datasets and propose a series of preliminary steps to carry out before the classic machine learning pipeline in order to detect possible biases, to avoid them if possible and to report results that are more representative of the actual predictive power of the methods under analysis.
[-]
|
Subjects:
|
Deep learning
,
COVID-19
,
Convolutional neural networks
,
Chest X-ray
,
Bias
,
Segmentation
,
Saliency map
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
IEEE Access. (eissn:
2169-3536
)
|
DOI:
|
10.1109/ACCESS.2021.3065456
|
Publisher:
|
Institute of Electrical and Electronics Engineers
|
Publisher version:
|
https://doi.org/10.1109/ACCESS.2021.3065456
|
Project ID:
|
info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2020%2F69//RADIATUS4. Infraestructura elástica y federada para el Análisis Big Data en la nube/
|
Thanks:
|
This work was supported by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE'' under Grant IMDEEA/2020/69.
|
Type:
|
Artículo
|