- -

Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Omar del Tejo Catalá es_ES
dc.contributor.author Salvador Igual, Ismael es_ES
dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Millan-Escriva, David es_ES
dc.contributor.author ORTIZ, V. es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2022-06-30T18:07:48Z
dc.date.available 2022-06-30T18:07:48Z
dc.date.issued 2021 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183723
dc.description.abstract [EN] Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that X-ray devices are already available in health centers and images are obtained immediately. Some datasets containing X-ray images with cases (pneumonia or COVID-19) and controls have been made available to develop machine-learning-based methods to aid in diagnosing the disease. However, these datasets are mainly composed of different sources coming from pre-COVID-19 datasets and COVID-19 datasets. Particularly, we have detected a significant bias in some of the released datasets used to train and test diagnostic systems, which might imply that the results published are optimistic and may overestimate the actual predictive capacity of the techniques proposed. In this article, we analyze the existing bias in some commonly used datasets and propose a series of preliminary steps to carry out before the classic machine learning pipeline in order to detect possible biases, to avoid them if possible and to report results that are more representative of the actual predictive power of the methods under analysis. es_ES
dc.description.sponsorship This work was supported by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE'' under Grant IMDEEA/2020/69. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep learning es_ES
dc.subject COVID-19 es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Chest X-ray es_ES
dc.subject Bias es_ES
dc.subject Segmentation es_ES
dc.subject Saliency map es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2021.3065456 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2020%2F69//RADIATUS4. Infraestructura elástica y federada para el Análisis Big Data en la nube/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología de Informática - Institut Universitari Mixt de Tecnologia d'Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Omar del Tejo Catalá; Salvador Igual, I.; Perez-Benito, FJ.; Millan-Escriva, D.; Ortiz, V.; Llobet Azpitarte, R.; Perez-Cortes, J. (2021). Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients. IEEE Access. 9:42370-42383. https://doi.org/10.1109/ACCESS.2021.3065456 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2021.3065456 es_ES
dc.description.upvformatpinicio 42370 es_ES
dc.description.upvformatpfin 42383 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.identifier.pmid 34812384 es_ES
dc.identifier.pmcid PMC8545228 es_ES
dc.relation.pasarela S\431680 es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem