Resumen:
|
[ES] Los procesos convencionales de transformación de materiales requieren afrontar nuevos retos que se presentan en la actual sociedad industrial como es la propia sostenibilidad medioambiental. De la misma forma, los ...[+]
[ES] Los procesos convencionales de transformación de materiales requieren afrontar nuevos retos que se presentan en la actual sociedad industrial como es la propia sostenibilidad medioambiental. De la misma forma, los productos fabricados en el futuro deberán cumplir ciertos requisitos medioambientales, como la reciclabilidad de la materia prima utilizada. Dentro de este contexto la fabricación de productos mediante técnicas tridimensionales como la fabricación aditiva, permite utilizar únicamente el material necesario que se requiere para un producto completo.
Dichas técnicas de fabricación son las solicitadas por el sector aeronáutico, entre otros, que requiere de unos valores de calidad muy exigentes. Dentro de estos ensayos, el estudio del comportamiento del material ante crecimiento de grieta es de gran importancia. Mediante este tipo de fabricación se obtiene un producto en estado casi final a través de la adición de capas de alrededor de 100 micras, que da como resultado una orientación de grano metalúrgico preferente y diferente a la misma aleación fabricada por forja convencional.
Los fenómenos ocurridos durante la fabricación pueden dar lugar a defectos como grietas o porosidades que disminuyen las capacidades resistentes, por lo que un estudio para predecir la vida del componente es importante. Dentro de los procesos de fabricación aditiva nos encontramos con la fabricación por haz de electrones, que consigue calidades de material casi con porosidad nula, por lo que empresas del sector aeronáutico o médico consideran esta técnica como de gran fiabilidad.
El trabajo desarrollado en esta tesis se basa en el estudio de aleaciones de titanio fabricadas mediante fabricación aditiva por haz de electrones. En concreto, el estudio se centra en el comportamiento a tenacidad a la fractura para relacionarlo con las características microestructurales más relevantes. Los análisis llevados a cabo consideran diversas orientaciones que tienen lugar en la bandeja de fabricación, realizándose ensayos mecánicos tanto estáticos como dinámicos.
Una segunda parte de la tesis se basa en el modelado mediante elementos finitos extendido, XFEM, que se desarrolla como alternativa a los métodos tradicionales de mallado. En el XFEM una aproximación de elementos finitos se construye de forma que sea capaz de representar funciones de enriquecimiento dentro de los elementos mediante grados de libertad adicionales. Un punto crítico en el proceso de cálculo mediante elementos finitos es el proceso de mallado. La precisión obtenida en la aproximación depende del tamaño de los elementos de la malla. Por tanto, el cálculo con precisión en puntos importantes como la zona cercana a grieta exige una malla con un tamaño de elemento muy pequeño. Con la técnica XFEM se alcanza una mayor precisión mediante un proceso de enriquecimiento de extremo de grieta.
Los resultados que ofrece la herramienta XFEM se comparan con los obtenidos experimentalmente con componentes fabricados mediante impresión 3D. Esta comparativa se lleva a cabo sobre diversas geometrías con la presencia de agujeros, de tal forma que se ha podido predecir el crecimiento de grieta que tiene lugar en materiales por impresión 3D. De la misma forma, se llevan a cabo comparativas de piezas con geometría compleja, para validar el modelo desarrollado.
[-]
[CA] Els processos convencionals de transformació de materials requereixen afrontar nous reptes que es presenten en l'actual societat industrial com és la pròpia sostenibilitat mediambiental. De la mateixa forma, els ...[+]
[CA] Els processos convencionals de transformació de materials requereixen afrontar nous reptes que es presenten en l'actual societat industrial com és la pròpia sostenibilitat mediambiental. De la mateixa forma, els productes fabricats en el futur hauran de complir certs requisits mediambientals, com el reciclatge de la matèria primera. Dins d'aquest context, la fabricació de productes mitjançant tecnologia 3D com la fabricació additiva, permet usar només el material necessari que es requereix per a un producte complet.
Aquestes tècniques de fabricació són les sol·licitades pel sector aeronàutic que requereix d'uns valors de qualitat molt exigents. Dins d'aquests assajos, l'estudi del comportament del material a través de creixement de clivella és vital. Mitjançant aquesta mena de fabricació s'obté un producte en estat quasi final a través de l'addició de capes d'alçària al voltant de 100 micres, que dona com a resultat una orientació de gra metal·lúrgic preferent i diferent al mateix però fabricat convencionalment.
Els fenòmens ocorreguts durant la fabricació poden donar lloc a defectes com a clivelles o porositats que poden disminuir les capacitats resistents, per la qual cosa un estudi per a predir la vida del material és important. Dins dels processos de fabricació additiva ens trobem amb la fabricació per feix d'electrons la qual aconsegueix qualitats de material quasi amb porositat nul·la, per la qual cosa empreses del sector aeronàutic i mèdic han conclòs a aquesta tècnica com la més fiable.
El treball desenvolupat en aquesta tesi es basa en l'estudi d'aliatges de titani fabricades mitjançant fabricació additiva per feix d'electrons, principalment el seu comportament a la tenacitat a la fractura per a relacionar-ho amb les característiques microestructurals més rellevants. Les anàlisis dutes a terme se centren en diverses orientacions que tenen lloc en la plataforma de fabricació, realitzant-se assajos mecànics tant estàtics com dinàmics.
Una segona part de la tesi es basa en el modelatge mitjançant elements finits estesos, XFEM, que es desenvolupa com a alternativa als mètodes lliures de malla. En el XFEM una aproximació d'elements finits es construeix de manera que siga capaç de representar funcions (enriquiment) dins dels elements. Un punt crític en el procés de càlcul en qualsevol mètode que usa una malla és el procés d'emmallat. La precisió obtinguda en l'aproximació depén de la grandària dels elements de malla. Per tant, el càlcul amb precisió en punts importants, com la zona pròxima a clivella, exigeix l'ús d'una malla amb una grandària d'element molt xicoteta. Amb la tècnica XFEM aconseguim aqueixa precisió mitjançant un procés de enriquiment.
[-]
[EN] Conventional material transformation processes require facing new challenges that arise in today's industrial society, such as environmental sustainability. Similarly, products manufactured in the future must meet ...[+]
[EN] Conventional material transformation processes require facing new challenges that arise in today's industrial society, such as environmental sustainability. Similarly, products manufactured in the future must meet certain environmental requirements, such as the recyclability of the raw material used. Within this context, the manufacture of products using 3D technology such as additive manufacturing, allows using only the necessary material that is required for a complete product.
These manufacturing techniques are requested by the aeronautical sector, which requires very demanding quality values. Within these tests, the study of the behavior of the material through crack growth is of great importance. By means of this manufacturing technology, a product is obtained in an almost final state through the addition of layers of about 100 microns, which results in a preferential metallurgical grain orientation and different from the same alloy manufactured by conventional methods.
The phenomena occurring during manufacturing can lead to defects such as cracks or porosities that can reduce the strength capabilities, so a study to predict the life of the component is important. Within the additive manufacturing processes we find the electron beam manufacturing which achieves material qualities with almost zero porosity. As a consequence, companies in the aeronautical or medical sector have concluded this technique as very reliable.
The work developed in this thesis is based on the study of titanium alloys manufactured by electron beam additive manufacturing. More precisely, the work is focused on the fracture toughness behavior in order to relate it to the most relevant microstructural characteristics. The analyses carried out consider different orientations and positions that take place in the fabrication tray, performing both static and dynamic mechanical tests.
A second part of the thesis is based on the application of the extended finite element method, XFEM, which is developed as an alternative to conventional finite element method. In XFEM a finite element approximation is constructed in such a way that it is able to represent functions within the elements. A critical point in the calculation process in the finite element method is the meshing process. The accuracy obtained in the approximation depends on the size of the elements of the mesh. Therefore, accurate computation at important points such as the near-crack zone requires the use of a mesh with a very small element size. With the XFEM technique, we achieve this accuracy by means of an enrichment process.
The results provided by the XFEM tool are compared with those obtained experimentally with respect to components manufactured by 3D printing. This comparison is carried out on different geometries with the presence of holes, in such a way that it has been possible to predict the crack growth that takes place in 3D printed materials. In the same way, comparisons of parts with complex geometry are carried out to validate the developed model.
[-]
|