[1] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Montel resolvents and uniformly mean ergodic semigroups of linear operators,</i> Quaest. Math. <b>36</b> (2013), 253–290.
[2] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator in the Fréchet spaces $ \ell^{p+}$ and $ L^{p-}$,</i> Glasgow Math. J. <b>59</b> (2017), 273–287.
[4] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator on Korenblum type spaces of analytic functions,</i> Collect. Math. <b>69</b> (2018), 263–281.
[+]
[1] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Montel resolvents and uniformly mean ergodic semigroups of linear operators,</i> Quaest. Math. <b>36</b> (2013), 253–290.
[2] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator in the Fréchet spaces $ \ell^{p+}$ and $ L^{p-}$,</i> Glasgow Math. J. <b>59</b> (2017), 273–287.
[4] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator on Korenblum type spaces of analytic functions,</i> Collect. Math. <b>69</b> (2018), 263–281.
[8] S.V. Astashkin, L. Maligranda, <i>Structure of Cesàro function spaces: a survey,</i> Function Spaces X, pp. 13–40. Banach Center Publ. <b>102</b>, Polish Acad. Sci. Inst. Math., Warsaw, 2014.
[9] G. Bennett, <i>Factorizing the classical inequalities,</i> Mem. Amer. Math. Soc. <b>120</b> (576), 1996, 1–130.
[10] J. Bonet, W.J. Ricker, <i>Operators acting in the dual spaces of discrete Cesàro spaces,</i> Monatsh. Math. <b>191</b> (2020), 487–512.
[11] J. Bonet, W.J. Ricker, <i>Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces,</i> Bull. Belg. Math. Soc. Simon Stevin (to appear), arXiv: 2009.01132v1.
[12] P.S. Bourdon, N.S. Feldman, J.H. Shapiro, <i>Some properties of $N$-supercyclic operators,</i> Studia Math., <b>165</b> (2004), 135–157.
[13] G. Crofts, <i>Concerning perfect Fréchet spaces and diagonal transformations,</i> Math. Ann. <b>182</b> (1969), 67–76.
[14] G.P. Curbera, W.J. Ricker, <i>Solid extensions of the Cesàro operator on $\ell^p$ and $ c_0$,</i> Integral Equ. Oper. Theory <b>80</b> (2014), 61–77.
[15] R.E. Edwards, <i>Functional Analysis. Theory and Applications,</i> Holt, Rinehart and Winston, New York-Chicago-San Fransisco, 1965.
[16] K.-G. Grosse-Erdmann, <i>The Blocking Technique, Weighted Mean Operators and Hardy's Inequality,</i> Lecture Notes in Math., vol. <b>1679</b>, Springer Verlag, Berlin Heidelberg, 1998.
[17] A. Grothendieck, <i>Topological Vector Spaces,</i> Gordon and Breach, London, 1973.
[18] G.H. Hardy, J.E. Littlewood, G. Pólya, <i>Inequalities,</i> Cambridge University Press, Cambridge, 1934.
[19] A.A. Jagers, <i>A note on Cesàro sequence spaces,</i> Nieuw, Arch. Wisk. <b>22</b> (1974), 113–124.
[20] H. Jarchow, <i>Locally Convex Spaces,</i> Teubner, Stuttgart, 1981.
[21] G. Köthe, <i>Topological Vector Spaces I,</i> 2nd printing rev., Springer, New York, 1983.
[22] G. Köthe, <i>Topological Vector Spaces II,</i> Springer, Berlin, 1979.
[23] U. Krengel, <i>Ergodic Theorems,</i> de Gruyter Studies in Mathematics <b>6</b>, Walter de Gruyter Co., Berlin, 1985.
[24] K. Leśnik, L. Maligranda, <i>Abstract Cesàro spaces. Duality,</i> J. Math. Anal. Appl. <b>424</b> (2015), 932–951.
[25] R. Meise, D. Vogt, <i>Introduction to Functional Analysis,</i> Clarendon Press, Oxford, 1997.
[26] A. Rodriguez-Arenas, <i>Some results about diagonal operators on Köthe echelon spaces,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM <b>113</b> (2019), 2959–2968.
[27] A.E. Taylor, <i>Introduction to Functional Analysis,</i> Wiley International Edition, John Wiley & Sons, Tokyo, 1958.
[28] L. Waelbroeck, <i>Topological Vector Spaces and Algebras,</i> Lecture Notes in Math., vol. <b>230</b>, Springer, Berlin, 1971.
[3] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Fréchet spaces $\mathrm{ces} (p+), 1 \leq p \lt \infty$,</i> J. Math. Anal. Appl. <b>458</b> (2018), 1314–1323.
[5] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Operators on the Fréchet sequence spaces $\mathrm{ces} (p+), 1 ≤ p \lt \infty$,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM <b>113</b> (2019), 1533–1556.
[6] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Multiplier and averaging operators in the Banach spaces $\mathrm{ces}(p), 1 \lt p \lt \infty$,</i> Positivity <b>23</b> (2019), 177–193.
[7] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Linear operators on the (LB)-sequence spaces $\mathrm{ces} (p-), 1 \lt p ≤ \infty$,</i> Descriptive topology and functional analysis II, Springer, Cham, Proc. Math. Stat. <b>286</b> (2019), 43–67.
[-]