- -

Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Ricker, Werner J. es_ES
dc.date.accessioned 2022-07-06T18:03:12Z
dc.date.available 2022-07-06T18:03:12Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0208-6573 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183894
dc.description.abstract [EN] The dual spaces d(p), 1 < p < infinity, of the discrete Cesaro (Banach) spaces ces(q), 1 < q < infinity, were studied by G. Bennett, A. Jagers and others. These (reflexive) dual Banach spaces induce the non-normable Frechet spaces d(p+) := boolean AND(r>p) d(r), for 1 <= p < infinity, and the (LB)-spaces d(p-) := boolean OR(1 < r < p) d(r), for 1< p <= infinity, recently introduced and investigated in [11]. Here a detailed study is made of various aspects, such as the spectrum, continuity, compactness, mean ergodicity and supercyclicity of the Cesàro operator, multiplication operators and inclusion operators when they act on (and between) such spaces. es_ES
dc.description.sponsorship The research of J. Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). es_ES
dc.language Inglés es_ES
dc.publisher Adam Mickiewicz University es_ES
dc.relation.ispartof Functiones et Approximatio Commentarii Mathematici es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fréchet sequence space es_ES
dc.subject (LB)-space es_ES
dc.subject Spectrum es_ES
dc.subject Multiplication operator es_ES
dc.subject Cesàro operator es_ES
dc.subject Mean ergodic operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7169/facm/1907 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Ricker, WJ. (2021). Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces. Functiones et Approximatio Commentarii Mathematici. 64(1):109-139. https://doi.org/10.7169/facm/1907 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.7169/facm/1907 es_ES
dc.description.upvformatpinicio 109 es_ES
dc.description.upvformatpfin 139 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 64 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\451207 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references [1] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Montel resolvents and uniformly mean ergodic semigroups of linear operators,</i> Quaest. Math. <b>36</b> (2013), 253–290. es_ES
dc.description.references [2] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator in the Fréchet spaces $ \ell^{p+}$ and $ L^{p-}$,</i> Glasgow Math. J. <b>59</b> (2017), 273–287. es_ES
dc.description.references [4] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator on Korenblum type spaces of analytic functions,</i> Collect. Math. <b>69</b> (2018), 263–281. es_ES
dc.description.references [8] S.V. Astashkin, L. Maligranda, <i>Structure of Cesàro function spaces: a survey,</i> Function Spaces X, pp. 13–40. Banach Center Publ. <b>102</b>, Polish Acad. Sci. Inst. Math., Warsaw, 2014. es_ES
dc.description.references [9] G. Bennett, <i>Factorizing the classical inequalities,</i> Mem. Amer. Math. Soc. <b>120</b> (576), 1996, 1–130. es_ES
dc.description.references [10] J. Bonet, W.J. Ricker, <i>Operators acting in the dual spaces of discrete Cesàro spaces,</i> Monatsh. Math. <b>191</b> (2020), 487–512. es_ES
dc.description.references [11] J. Bonet, W.J. Ricker, <i>Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces,</i> Bull. Belg. Math. Soc. Simon Stevin (to appear), arXiv: 2009.01132v1. es_ES
dc.description.references [12] P.S. Bourdon, N.S. Feldman, J.H. Shapiro, <i>Some properties of $N$-supercyclic operators,</i> Studia Math., <b>165</b> (2004), 135–157. es_ES
dc.description.references [13] G. Crofts, <i>Concerning perfect Fréchet spaces and diagonal transformations,</i> Math. Ann. <b>182</b> (1969), 67–76. es_ES
dc.description.references [14] G.P. Curbera, W.J. Ricker, <i>Solid extensions of the Cesàro operator on $\ell^p$ and $ c_0$,</i> Integral Equ. Oper. Theory <b>80</b> (2014), 61–77. es_ES
dc.description.references [15] R.E. Edwards, <i>Functional Analysis. Theory and Applications,</i> Holt, Rinehart and Winston, New York-Chicago-San Fransisco, 1965. es_ES
dc.description.references [16] K.-G. Grosse-Erdmann, <i>The Blocking Technique, Weighted Mean Operators and Hardy's Inequality,</i> Lecture Notes in Math., vol. <b>1679</b>, Springer Verlag, Berlin Heidelberg, 1998. es_ES
dc.description.references [17] A. Grothendieck, <i>Topological Vector Spaces,</i> Gordon and Breach, London, 1973. es_ES
dc.description.references [18] G.H. Hardy, J.E. Littlewood, G. Pólya, <i>Inequalities,</i> Cambridge University Press, Cambridge, 1934. es_ES
dc.description.references [19] A.A. Jagers, <i>A note on Cesàro sequence spaces,</i> Nieuw, Arch. Wisk. <b>22</b> (1974), 113–124. es_ES
dc.description.references [20] H. Jarchow, <i>Locally Convex Spaces,</i> Teubner, Stuttgart, 1981. es_ES
dc.description.references [21] G. Köthe, <i>Topological Vector Spaces I,</i> 2nd printing rev., Springer, New York, 1983. es_ES
dc.description.references [22] G. Köthe, <i>Topological Vector Spaces II,</i> Springer, Berlin, 1979. es_ES
dc.description.references [23] U. Krengel, <i>Ergodic Theorems,</i> de Gruyter Studies in Mathematics <b>6</b>, Walter de Gruyter Co., Berlin, 1985. es_ES
dc.description.references [24] K. Leśnik, L. Maligranda, <i>Abstract Cesàro spaces. Duality,</i> J. Math. Anal. Appl. <b>424</b> (2015), 932–951. es_ES
dc.description.references [25] R. Meise, D. Vogt, <i>Introduction to Functional Analysis,</i> Clarendon Press, Oxford, 1997. es_ES
dc.description.references [26] A. Rodriguez-Arenas, <i>Some results about diagonal operators on Köthe echelon spaces,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM <b>113</b> (2019), 2959–2968. es_ES
dc.description.references [27] A.E. Taylor, <i>Introduction to Functional Analysis,</i> Wiley International Edition, John Wiley &amp; Sons, Tokyo, 1958. es_ES
dc.description.references [28] L. Waelbroeck, <i>Topological Vector Spaces and Algebras,</i> Lecture Notes in Math., vol. <b>230</b>, Springer, Berlin, 1971. es_ES
dc.description.references [3] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Fréchet spaces $\mathrm{ces} (p+), 1 \leq p \lt \infty$,</i> J. Math. Anal. Appl. <b>458</b> (2018), 1314–1323. es_ES
dc.description.references [5] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Operators on the Fréchet sequence spaces $\mathrm{ces} (p+), 1 ≤ p \lt \infty$,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM <b>113</b> (2019), 1533–1556. es_ES
dc.description.references [6] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Multiplier and averaging operators in the Banach spaces $\mathrm{ces}(p), 1 \lt p \lt \infty$,</i> Positivity <b>23</b> (2019), 177–193. es_ES
dc.description.references [7] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Linear operators on the (LB)-sequence spaces $\mathrm{ces} (p-), 1 \lt p ≤ \infty$,</i> Descriptive topology and functional analysis II, Springer, Cham, Proc. Math. Stat. <b>286</b> (2019), 43–67. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem