Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner J. | es_ES |
dc.date.accessioned | 2022-07-06T18:03:12Z | |
dc.date.available | 2022-07-06T18:03:12Z | |
dc.date.issued | 2021-03 | es_ES |
dc.identifier.issn | 0208-6573 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183894 | |
dc.description.abstract | [EN] The dual spaces d(p), 1 < p < infinity, of the discrete Cesaro (Banach) spaces ces(q), 1 < q < infinity, were studied by G. Bennett, A. Jagers and others. These (reflexive) dual Banach spaces induce the non-normable Frechet spaces d(p+) := boolean AND(r>p) d(r), for 1 <= p < infinity, and the (LB)-spaces d(p-) := boolean OR(1 < r < p) d(r), for 1< p <= infinity, recently introduced and investigated in [11]. Here a detailed study is made of various aspects, such as the spectrum, continuity, compactness, mean ergodicity and supercyclicity of the Cesàro operator, multiplication operators and inclusion operators when they act on (and between) such spaces. | es_ES |
dc.description.sponsorship | The research of J. Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Adam Mickiewicz University | es_ES |
dc.relation.ispartof | Functiones et Approximatio Commentarii Mathematici | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fréchet sequence space | es_ES |
dc.subject | (LB)-space | es_ES |
dc.subject | Spectrum | es_ES |
dc.subject | Multiplication operator | es_ES |
dc.subject | Cesàro operator | es_ES |
dc.subject | Mean ergodic operator | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7169/facm/1907 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Ricker, WJ. (2021). Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces. Functiones et Approximatio Commentarii Mathematici. 64(1):109-139. https://doi.org/10.7169/facm/1907 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.7169/facm/1907 | es_ES |
dc.description.upvformatpinicio | 109 | es_ES |
dc.description.upvformatpfin | 139 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 64 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\451207 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | [1] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Montel resolvents and uniformly mean ergodic semigroups of linear operators,</i> Quaest. Math. <b>36</b> (2013), 253–290. | es_ES |
dc.description.references | [2] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator in the Fréchet spaces $ \ell^{p+}$ and $ L^{p-}$,</i> Glasgow Math. J. <b>59</b> (2017), 273–287. | es_ES |
dc.description.references | [4] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Cesàro operator on Korenblum type spaces of analytic functions,</i> Collect. Math. <b>69</b> (2018), 263–281. | es_ES |
dc.description.references | [8] S.V. Astashkin, L. Maligranda, <i>Structure of Cesàro function spaces: a survey,</i> Function Spaces X, pp. 13–40. Banach Center Publ. <b>102</b>, Polish Acad. Sci. Inst. Math., Warsaw, 2014. | es_ES |
dc.description.references | [9] G. Bennett, <i>Factorizing the classical inequalities,</i> Mem. Amer. Math. Soc. <b>120</b> (576), 1996, 1–130. | es_ES |
dc.description.references | [10] J. Bonet, W.J. Ricker, <i>Operators acting in the dual spaces of discrete Cesàro spaces,</i> Monatsh. Math. <b>191</b> (2020), 487–512. | es_ES |
dc.description.references | [11] J. Bonet, W.J. Ricker, <i>Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces,</i> Bull. Belg. Math. Soc. Simon Stevin (to appear), arXiv: 2009.01132v1. | es_ES |
dc.description.references | [12] P.S. Bourdon, N.S. Feldman, J.H. Shapiro, <i>Some properties of $N$-supercyclic operators,</i> Studia Math., <b>165</b> (2004), 135–157. | es_ES |
dc.description.references | [13] G. Crofts, <i>Concerning perfect Fréchet spaces and diagonal transformations,</i> Math. Ann. <b>182</b> (1969), 67–76. | es_ES |
dc.description.references | [14] G.P. Curbera, W.J. Ricker, <i>Solid extensions of the Cesàro operator on $\ell^p$ and $ c_0$,</i> Integral Equ. Oper. Theory <b>80</b> (2014), 61–77. | es_ES |
dc.description.references | [15] R.E. Edwards, <i>Functional Analysis. Theory and Applications,</i> Holt, Rinehart and Winston, New York-Chicago-San Fransisco, 1965. | es_ES |
dc.description.references | [16] K.-G. Grosse-Erdmann, <i>The Blocking Technique, Weighted Mean Operators and Hardy's Inequality,</i> Lecture Notes in Math., vol. <b>1679</b>, Springer Verlag, Berlin Heidelberg, 1998. | es_ES |
dc.description.references | [17] A. Grothendieck, <i>Topological Vector Spaces,</i> Gordon and Breach, London, 1973. | es_ES |
dc.description.references | [18] G.H. Hardy, J.E. Littlewood, G. Pólya, <i>Inequalities,</i> Cambridge University Press, Cambridge, 1934. | es_ES |
dc.description.references | [19] A.A. Jagers, <i>A note on Cesàro sequence spaces,</i> Nieuw, Arch. Wisk. <b>22</b> (1974), 113–124. | es_ES |
dc.description.references | [20] H. Jarchow, <i>Locally Convex Spaces,</i> Teubner, Stuttgart, 1981. | es_ES |
dc.description.references | [21] G. Köthe, <i>Topological Vector Spaces I,</i> 2nd printing rev., Springer, New York, 1983. | es_ES |
dc.description.references | [22] G. Köthe, <i>Topological Vector Spaces II,</i> Springer, Berlin, 1979. | es_ES |
dc.description.references | [23] U. Krengel, <i>Ergodic Theorems,</i> de Gruyter Studies in Mathematics <b>6</b>, Walter de Gruyter Co., Berlin, 1985. | es_ES |
dc.description.references | [24] K. Leśnik, L. Maligranda, <i>Abstract Cesàro spaces. Duality,</i> J. Math. Anal. Appl. <b>424</b> (2015), 932–951. | es_ES |
dc.description.references | [25] R. Meise, D. Vogt, <i>Introduction to Functional Analysis,</i> Clarendon Press, Oxford, 1997. | es_ES |
dc.description.references | [26] A. Rodriguez-Arenas, <i>Some results about diagonal operators on Köthe echelon spaces,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM <b>113</b> (2019), 2959–2968. | es_ES |
dc.description.references | [27] A.E. Taylor, <i>Introduction to Functional Analysis,</i> Wiley International Edition, John Wiley & Sons, Tokyo, 1958. | es_ES |
dc.description.references | [28] L. Waelbroeck, <i>Topological Vector Spaces and Algebras,</i> Lecture Notes in Math., vol. <b>230</b>, Springer, Berlin, 1971. | es_ES |
dc.description.references | [3] A.A. Albanese, J. Bonet, W.J. Ricker, <i>The Fréchet spaces $\mathrm{ces} (p+), 1 \leq p \lt \infty$,</i> J. Math. Anal. Appl. <b>458</b> (2018), 1314–1323. | es_ES |
dc.description.references | [5] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Operators on the Fréchet sequence spaces $\mathrm{ces} (p+), 1 ≤ p \lt \infty$,</i> Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM <b>113</b> (2019), 1533–1556. | es_ES |
dc.description.references | [6] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Multiplier and averaging operators in the Banach spaces $\mathrm{ces}(p), 1 \lt p \lt \infty$,</i> Positivity <b>23</b> (2019), 177–193. | es_ES |
dc.description.references | [7] A.A. Albanese, J. Bonet, W.J. Ricker, <i>Linear operators on the (LB)-sequence spaces $\mathrm{ces} (p-), 1 \lt p ≤ \infty$,</i> Descriptive topology and functional analysis II, Springer, Cham, Proc. Math. Stat. <b>286</b> (2019), 43–67. | es_ES |