- -

Non-local spatially varying finite mixture models for image segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-local spatially varying finite mixture models for image segmentation

Mostrar el registro completo del ítem

Juan -Albarracín, J.; Fuster García, E.; Juan, A.; Garcia-Gomez, JM. (2021). Non-local spatially varying finite mixture models for image segmentation. Statistics and Computing. 31(1):1-10. https://doi.org/10.1007/s11222-020-09988-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183895

Ficheros en el ítem

Metadatos del ítem

Título: Non-local spatially varying finite mixture models for image segmentation
Autor: Juan -Albarracín, Javier Fuster García, Elíes Juan, Alfons Garcia-Gomez, Juan M
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] In this work, we propose a new Bayesian model for unsupervised image segmentation based on a combination of the spatially varying finite mixture models (SVFMMs) and the non-local means (NLM) framework. The probabilistic ...[+]
Palabras clave: Spatially varying finite mixture models , Non-local means , Unsupervised learning
Derechos de uso: Reserva de todos los derechos
Fuente:
Statistics and Computing. (issn: 0960-3174 )
DOI: 10.1007/s11222-020-09988-w
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11222-020-09988-w
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/844646/EU
info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R//CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-80054-R//BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE PROSTATA/
Agradecimientos:
This study is partially supported by Secretaria de Estado de Investigacion, Desarrollo e Innovacion (DPI2016-80054-R, TIN2013-43457-R) and Agencia Valenciana de la Innovacion (INNVAL10/18/048). E.F.G was supported by the ...[+]
Tipo: Artículo

References

Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’07, pp. 1027–1035 (2007)

Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

Blake, A., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011) [+]
Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’07, pp. 1027–1035 (2007)

Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

Blake, A., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011)

Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005). https://doi.org/10.1109/TNN.2004.841773

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). https://doi.org/10.1109/34.969114

Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38

Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). https://doi.org/10.1109/34.400568

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

Ester, M., Kriegel, HP., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, KDD’96, pp. 226–231 (1996)

Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE 10(5), e0125143 (2015). https://doi.org/10.1371/journal.pone.0125143

Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

Neal, R., Hinton, G.: A view of the em algorithm that justifies incremental, sparse, and other variants. Learn. Graph. Models 89, 110 (1999). https://doi.org/10.1007/978-94-011-5014-9-12

Nikou, C., Galatsanos, N.P., Likas, A.C.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 16(4), 1121–1130 (2007)

Nikou, C., Likas, A.C., Galatsanos, N.P.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010). https://doi.org/10.1109/TIP.2010.2047903

Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J

Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15

Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998). https://doi.org/10.1109/83.701161

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017). https://doi.org/10.1016/j.neucom.2017.06.053

Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587416

Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: Probabilistic non-local means. IEEE Signal Process. Lett. 20(8), 763–766 (2013). https://doi.org/10.1109/LSP.2013.2263135

Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008). https://doi.org/10.1016/j.cviu.2007.08.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem