- -

Non-local spatially varying finite mixture models for image segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-local spatially varying finite mixture models for image segmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juan -Albarracín, Javier es_ES
dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Juan, Alfons es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2022-07-06T18:03:12Z
dc.date.available 2022-07-06T18:03:12Z
dc.date.issued 2021-01-12 es_ES
dc.identifier.issn 0960-3174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183895
dc.description.abstract [EN] In this work, we propose a new Bayesian model for unsupervised image segmentation based on a combination of the spatially varying finite mixture models (SVFMMs) and the non-local means (NLM) framework. The probabilistic NLM weighting function is successfully integrated into a varying Gauss¿Markov random field, yielding a prior density that adaptively imposes a local regularization to simultaneously preserve edges and enforce smooth constraints in homogeneous regions of the image. Two versions of our model are proposed: a pixel-based model and a patch-based model, depending on the design of the probabilistic NLM weighting function. Contrary to previous methods proposed in the literature, our approximation does not introduce new parameters to be estimated into the model, because the NLM weighting function is completely known once the neighborhood of a pixel is fixed. The proposed model can be estimated in closed-form solution via a maximum a posteriori (MAP) estimation in an expectation¿maximization scheme. We have compared our model with previously proposed SVFMMs using two public datasets: the Berkeley Segmentation dataset and the BRATS 2013 dataset. The proposed model performs favorably to previous approaches in the literature, achieving better results in terms of Rand Index and Dice metrics in our experiments. es_ES
dc.description.sponsorship This study is partially supported by Secretaria de Estado de Investigacion, Desarrollo e Innovacion (DPI2016-80054-R, TIN2013-43457-R) and Agencia Valenciana de la Innovacion (INNVAL10/18/048). E.F.G was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement (No. 844646) and also acknowledges the support of NVIDIA GPU Grant Program. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Statistics and Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spatially varying finite mixture models es_ES
dc.subject Non-local means es_ES
dc.subject Unsupervised learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Non-local spatially varying finite mixture models for image segmentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11222-020-09988-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/844646/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R//CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-80054-R//BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE PROSTATA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Juan -Albarracín, J.; Fuster García, E.; Juan, A.; Garcia-Gomez, JM. (2021). Non-local spatially varying finite mixture models for image segmentation. Statistics and Computing. 31(1):1-10. https://doi.org/10.1007/s11222-020-09988-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11222-020-09988-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\432570 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder AGENCIA VALENCIANA DE LA INNOVACION es_ES
dc.description.references Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’07, pp. 1027–1035 (2007) es_ES
dc.description.references Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006) es_ES
dc.description.references Blake, A., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011) es_ES
dc.description.references Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005). https://doi.org/10.1109/TNN.2004.841773 es_ES
dc.description.references Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). https://doi.org/10.1109/34.969114 es_ES
dc.description.references Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38 es_ES
dc.description.references Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). https://doi.org/10.1109/34.400568 es_ES
dc.description.references Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977) es_ES
dc.description.references Ester, M., Kriegel, HP., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, KDD’96, pp. 226–231 (1996) es_ES
dc.description.references Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE 10(5), e0125143 (2015). https://doi.org/10.1371/journal.pone.0125143 es_ES
dc.description.references Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001) es_ES
dc.description.references Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694 es_ES
dc.description.references Neal, R., Hinton, G.: A view of the em algorithm that justifies incremental, sparse, and other variants. Learn. Graph. Models 89, 110 (1999). https://doi.org/10.1007/978-94-011-5014-9-12 es_ES
dc.description.references Nikou, C., Galatsanos, N.P., Likas, A.C.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 16(4), 1121–1130 (2007) es_ES
dc.description.references Nikou, C., Likas, A.C., Galatsanos, N.P.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010). https://doi.org/10.1109/TIP.2010.2047903 es_ES
dc.description.references Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J es_ES
dc.description.references Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15 es_ES
dc.description.references Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998). https://doi.org/10.1109/83.701161 es_ES
dc.description.references Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017). https://doi.org/10.1016/j.neucom.2017.06.053 es_ES
dc.description.references Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587416 es_ES
dc.description.references Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: Probabilistic non-local means. IEEE Signal Process. Lett. 20(8), 763–766 (2013). https://doi.org/10.1109/LSP.2013.2263135 es_ES
dc.description.references Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008). https://doi.org/10.1016/j.cviu.2007.08.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem