- -

Selecting optimal SpMV realizations for GPUs via machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selecting optimal SpMV realizations for GPUs via machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dufrechou, Ernesto es_ES
dc.contributor.author Ezzatti, Pablo es_ES
dc.contributor.author Quintana-Orti, Enrique S. es_ES
dc.date.accessioned 2022-07-12T18:05:00Z
dc.date.available 2022-07-12T18:05:00Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 1094-3420 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184043
dc.description.abstract [EN] More than 10 years of research related to the development of efficient GPU routines for the sparse matrix-vector product (SpMV) have led to several realizations, each with its own strengths and weaknesses. In this work, we review some of the most relevant efforts on the subject, evaluate a few prominent routines that are publicly available using more than 3000 matrices from different applications, and apply machine learning techniques to anticipate which SpMV realization will perform best for each sparse matrix on a given parallel platform. Our numerical experiments confirm the methods offer such varied behaviors depending on the matrix structure that the identification of general rules to select the optimal method for a given matrix becomes extremely difficult, though some useful strategies (heuristics) can be defined. Using a machine learning approach, we show that it is possible to obtain unexpensive classifiers that predict the best method for a given sparse matrix with over 80% accuracy, demonstrating that this approach can deliver important reductions in both execution time and energy consumption es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: ES Quintana-Ort was supported by project TIN2017-82972-R of the MINECO and FEDER es_ES
dc.language Inglés
dc.language.iso Inglés
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of High Performance Computing Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sparse numerical linear algebra es_ES
dc.subject Sparse matrix-vector product (SpMV) es_ES
dc.subject Automatic method selection es_ES
dc.subject Machine learning es_ES
dc.subject Parallel architectures es_ES
dc.subject Graphics processing units (GPUs) es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Selecting optimal SpMV realizations for GPUs via machine learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1094342021990738 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//TIN2017-82972-R/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Dufrechou, E.; Ezzatti, P.; Quintana-Orti, ES. (2021). Selecting optimal SpMV realizations for GPUs via machine learning. International Journal of High Performance Computing Applications. 35(3):254-267. https://doi.org/10.1177/1094342021990738 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1094342021990738 es_ES
dc.description.upvformatpinicio 254 es_ES
dc.description.upvformatpfin 267 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\436240 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem