Mostrar el registro completo del ítem
Dufrechou, E.; Ezzatti, P.; Quintana-Orti, ES. (2021). Selecting optimal SpMV realizations for GPUs via machine learning. International Journal of High Performance Computing Applications. 35(3):254-267. https://doi.org/10.1177/1094342021990738
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184043
Título: | Selecting optimal SpMV realizations for GPUs via machine learning | |
Autor: | Dufrechou, Ernesto Ezzatti, Pablo | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] More than 10 years of research related to the development of efficient GPU routines for the sparse matrix-vector product (SpMV) have led to several realizations, each with its own strengths and weaknesses. In this ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1177/1094342021990738 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|