- -

The KM3NeT potential for the next core-collapse supernova observation with neutrinos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The KM3NeT potential for the next core-collapse supernova observation with neutrinos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aiello, S. es_ES
dc.contributor.author Albert, A. es_ES
dc.contributor.author Garre, S. Alves es_ES
dc.contributor.author Aly, Z. es_ES
dc.contributor.author Ambrosone, A. es_ES
dc.contributor.author Ameli, F. es_ES
dc.contributor.author Andre, M. es_ES
dc.contributor.author Androulakis, G. es_ES
dc.contributor.author Anghinolfi, M. es_ES
dc.contributor.author Anguita, M. es_ES
dc.contributor.author Anton, G. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Ardid-Ramírez, Joan Salvador es_ES
dc.contributor.author Aublin, J. es_ES
dc.contributor.author Bagatelas, C. es_ES
dc.contributor.author Bou Cabo, Manuel es_ES
dc.contributor.author Diego-Tortosa, Dídac es_ES
dc.contributor.author Espinosa Roselló, Víctor es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.contributor.author Poirè, Chiara es_ES
dc.date.accessioned 2022-07-18T18:05:27Z
dc.date.available 2022-07-18T18:05:27Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 1434-6044 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184367
dc.description.abstract [EN] The KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with 6200 optical modules comprising a total of 200,000 photomultiplier tubes, KM3NeT will achieve sensitivity to 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is esti- mated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a 5 ¿ discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud (60 kpc). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to deter- mine the arrival time of the neutrino burst with a few millisec- onds precision for sources up to 5¿8 kpc away, and detecting the peculiar signature of the standing accretion shock insta- bility if the core-collapse supernova explosion happens closer than 3¿5 kpc, depending on the progenitor mass. KM3NeT¿s capability to measure the neutrino flux spectral parameters is also presented. es_ES
dc.description.sponsorship X The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISO-LIA/2018/119) and GenT (ref. CIDEGENT/2018/034 and CIDE-GENT/2019/043) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain. This work has also received funding from the European Union'sHorizon 2020 research and innovation program under Grant agreement no 739560. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The European Physical Journal C es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject KM3NeT es_ES
dc.subject Core-collapse supernova es_ES
dc.subject Neutrinos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title The KM3NeT potential for the next core-collapse supernova observation with neutrinos es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epjc/s10052-021-09187-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//SOMM17%2F6104%2FUGR / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713673/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-15-CE31-0020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/739560/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ICTP//AF-13/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST2%2F00758 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIUR//NAT-NET 2017W4HA7S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SRNSF//FR-18-1268/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GRISOLIAP%2F2018%2F119//AYUDA SANTIAGO GRISOLIA PROYECTO: ACUSTICA EN DETECTORES DE PARTICULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//AYUDA CONTRATACION CIDEGENT INVESTIGADORES DE EXCELENCIA-ARDID RAMIREZ, JOAN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//ARTIFICIAL GENERAL INTELLIGENCE:BEYOND DEEP LEARNING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Aiello, S.; Albert, A.; Garre, SA.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.... (2021). The KM3NeT potential for the next core-collapse supernova observation with neutrinos. The European Physical Journal C. 81(5):1-19. https://doi.org/10.1140/epjc/s10052-021-09187-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1140/epjc/s10052-021-09187-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\461499 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Shota Rustaveli National Science Foundation es_ES
dc.contributor.funder Abdus Salam International Centre for Theoretical Physics es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.description.references C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, Oxford, 2007) es_ES
dc.description.references H.T. Janka, Neutrino-Driven Explosions (Springer International Publishing, Cham, 2017), p. 1095. https://doi.org/10.1007/978-3-319-21846-5_109 es_ES
dc.description.references K.S. Hirata et al., Phys. Rev. D 38, 448 (1988). https://doi.org/10.1103/PhysRevD.38.448 es_ES
dc.description.references T. Haines et al., Nucl. Instrum. Methods A 264, 28 (1988). https://doi.org/10.1016/0168-9002(88)91097-2 es_ES
dc.description.references E.N. Alekseev, L.N. Alekseeva, I.V. Krivosheina, V.I. Volchenko, Phys. Lett. B 205, 209 (1988). https://doi.org/10.1016/0370-2693(88)91651-6 es_ES
dc.description.references S. Adrian-Martinez et al., J. Phys. G 43(8), 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001 es_ES
dc.description.references A. Burrows, E. Livne, L. Dessart, C.D. Ott, J. Murphy, Astrophys. J. 655, 416 (2007). https://doi.org/10.1086/509773 es_ES
dc.description.references M. Obergaulinger, N.J. Hammer, E. Müller, Proc. Int. Astron. Union 2(S239), 323–325 (2006). https://doi.org/10.1017/S1743921307000671 es_ES
dc.description.references E.P. O’Connor, S.M. Couch, Astrophys. J. 865(2), 81 (2018). https://doi.org/10.3847/1538-4357/aadcf7 es_ES
dc.description.references I. Tamborra, G. Raffelt, F. Hanke, H.T. Janka, B. Mueller, Phys. Rev. D 90(4), 045032 (2014). https://doi.org/10.1103/PhysRevD.90.045032 es_ES
dc.description.references M.T. Keil, Supernova neutrino spectra and applications to flavor oscillations. Ph.D. thesis, Technische Universität München (2003) es_ES
dc.description.references I. Tamborra, F. Hanke, B. Müller, H.T. Janka, G. Raffelt, Phys. Rev. Lett. 111(12), 121104 (2013). https://doi.org/10.1103/PhysRevLett.111.121104 es_ES
dc.description.references T. Lund, A. Marek, C. Lunardini, H.T. Janka, G. Raffelt, Phys. Rev. D 82, 063007 (2010). https://doi.org/10.1103/PhysRevD.82.063007 es_ES
dc.description.references V. Roma, J. Powell, I.S. Heng, R. Frey, Phys. Rev. D 99(6), 063018 (2019). https://doi.org/10.1103/PhysRevD.99.063018 es_ES
dc.description.references L. Walk, I. Tamborra, H.T. Janka, A. Summa, D. Kresse, Phys. Rev. D 101(12), 123013 (2020). https://doi.org/10.1103/PhysRevD.101.123013 es_ES
dc.description.references S. Aiello et al., J. Astron. Telesc. Instrum. Syst. 5(4), 046001 (2019). https://doi.org/10.1117/1.JATIS.5.4.046001 es_ES
dc.description.references S. Adrian-Martinez et al., Eur. Phys. J. C 74(9), 3056 (2014). https://doi.org/10.1140/epjc/s10052-014-3056-3 es_ES
dc.description.references S. Adrian-Martinez et al., Eur. Phys. J. C 76(2), 54 (2016). https://doi.org/10.1140/epjc/s10052-015-3868-9 es_ES
dc.description.references R. Abbasi et al., Astron. Astrophys. 535, A109 (2011). https://doi.org/10.1051/0004-6361/201117810e. (Erratum: Astron. Astrophys. 563, C1 (2014)) es_ES
dc.description.references K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012). https://doi.org/10.1146/annurev-nucl-102711-095006 es_ES
dc.description.references A. Strumia, F. Vissani, Phys. Lett. B 564, 42 (2003). https://doi.org/10.1016/S0370-2693(03)00616-6 es_ES
dc.description.references G. Radel, R. Beyer, Mod. Phys. Lett. A 8, 1067 (1993). https://doi.org/10.1142/S0217732393002567 es_ES
dc.description.references E. Kolbe, K. Langanke, P. Vogel, Phys. Rev. D 66, 013007 (2002). https://doi.org/10.1103/PhysRevD.66.013007 es_ES
dc.description.references A.G. Tsirigotis, A. Leisos, S.E. Tzamarias, Nucl. Instrum. Methods A 626–627, S185 (2011). https://doi.org/10.1016/j.nima.2010.06.258 es_ES
dc.description.references S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 es_ES
dc.description.references M. Ageron et al., Eur. Phys. J. C 80(2), 99 (2020). https://doi.org/10.1140/epjc/s10052-020-7629-z es_ES
dc.description.references Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, Astropart. Phys. 25, 1 (2006). https://doi.org/10.1016/j.astropartphys.2005.10.005 es_ES
dc.description.references T. Totani, K. Sato, H.E. Dalhed, J.R. Wilson, Astrophys. J. 496, 216 (1998). https://doi.org/10.1086/305364 es_ES
dc.description.references A. Mirizzi, I. Tamborra, H.T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Riv. Nuovo Cim. 39(1–2), 1 (2016). https://doi.org/10.1393/ncr/i2016-10120-8 es_ES
dc.description.references G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0. https://doi.org/10.1140/epjc/s10052-013-2501-z (Erratum: Eur. Phys. J. C 73, 2501 (2013)) es_ES
dc.description.references S.M. Adams, C.S. Kochanek, J.F. Beacom, M.R. Vagins, K.Z. Stanek, Astrophys. J. 778, 164 (2013). https://doi.org/10.1088/0004-637X/778/2/164 es_ES
dc.description.references R. Cross, A. Fritz, S. Griswold, PoS ICRC2019, 889 (2020). https://doi.org/10.22323/1.358.0889 es_ES
dc.description.references M. Ikeda et al., Astrophys. J. 669, 519 (2007). https://doi.org/10.1086/521547 es_ES
dc.description.references G. Riccobene, A. Capone, Astropart. Phys. 27, 1 (2007). https://doi.org/10.1016/j.astropartphys.2006.08.006 es_ES
dc.description.references L. Köpke, J. Phys. Conf. Ser. 1029(1), 012001 (2018) es_ES
dc.description.references R. Bruijn, Nucl. Phys. B Proc. Suppl. 237–238, 94 (2013). https://doi.org/10.1016/j.nuclphysbps.2013.04.065 es_ES
dc.description.references M. Salathe, M. Ribordy, L. Demirors, Astropart. Phys. 35, 485 (2012). https://doi.org/10.1016/j.astropartphys.2011.10.012 es_ES
dc.description.references M.G. Aartsen, et al. IceCube-Gen2: The Window to the Extreme Universe (2020) es_ES
dc.description.references A.G. Rosso, F. Vissani, M.C. Volpe, JCAP 1804(04), 040 (2018) es_ES
dc.description.references A. Burrows, K. Klein, R. Gandhi, Phys. Rev. D 45, 3361 (1992). https://doi.org/10.1103/PhysRevD.45.3361 es_ES
dc.description.references A. Coleiro, M.C. Molla, D. Dornic, M. Lincetto, V. Kulikovskiy, Eur. Phys. J. C 80(9), 856 (2020). https://doi.org/10.1140/epjc/s10052-020-8407-7 es_ES
dc.description.references S. Al Kharusi, et al., New J. Phys. (2021). arXiv:2011.00035 [astro-ph.HE] es_ES
dc.description.references K. Nakamura, S. Horiuchi, M. Tanaka, K. Hayama, T. Takiwaki, K. Kotake, Mon. Not. R. Astron. Soc. 461(3), 3296 (2016). https://doi.org/10.1093/mnras/stw1453 es_ES
dc.description.references R.S.L. Hansen, M. Lindner, O. Scholer, Phys. Rev. D 101(12), 123018 (2020). https://doi.org/10.1103/PhysRevD.101.123018 es_ES
dc.description.references J. Migenda, Detecting Fast Time Variations in the Supernova Neutrino Flux with Hyper-Kamiokande. Master thesis, Technische Universität München (2016) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem