Mostrar el registro sencillo del ítem
dc.contributor.author | Morell-Monzó, Sergio | es_ES |
dc.contributor.author | Sebastiá-Frasquet, M.-T. | es_ES |
dc.contributor.author | Estornell Cremades, Javier | es_ES |
dc.date.accessioned | 2022-07-19T18:05:44Z | |
dc.date.available | 2022-07-19T18:05:44Z | |
dc.date.issued | 2021-02 | es_ES |
dc.identifier.issn | 2072-4292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/184442 | |
dc.description.abstract | [EN] Agricultural land abandonment is an increasing problem in Europe. The Comunitat Valenciana Region (Spain) is one of the most important citrus producers in Europe suffering this problem. This region characterizes by small sized citrus plots and high spatial fragmentation which makes necessary to use Very High-Resolution images to detect abandoned plots. In this paper spectral and Gray Level Co-Occurrence Matrix (GLCM)-based textural information derived from the Normalized Difference Vegetation Index (NDVI) are used to map abandoned citrus plots in Oliva municipality (eastern Spain). The proposed methodology is based on three general steps: (a) extraction of spectral and textural features from the image, (b) pixel-based classification of the image using the Random Forest algorithm, and (c) assignment of a single value per plot by majority voting. The best results were obtained when extracting the texture features with a 9 x 9 window size and the Random Forest model showed convergence around 100 decision trees. Cross-validation of the model showed an overall accuracy of the pixel-based classification of 87% and an overall accuracy of the plot-based classification of 95%. All the variables used are statistically significant for the classification, however the most important were contrast, dissimilarity, NIR band (720 nm), and blue band (620 nm). According to our results, 31% of the plots classified as citrus in Oliva by current methodology are abandoned. This is very important to avoid overestimating crop yield calculations by public administrations. The model was applied successfully outside the main study area (Oliva municipality); with a slightly lower accuracy (92%). This research provides a new approach to map small agricultural plots, especially to detect land abandonment in woody evergreen crops that have been little studied until now. | es_ES |
dc.description.sponsorship | This research was funded by regional government of Spain, Generalitat Valenciana, within the framework of the research project AICO/2020/246 and the APC was also funded by the research project AICO/2020/246. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Remote Sensing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Land abandonment | es_ES |
dc.subject | Land use | es_ES |
dc.subject | Agriculture | es_ES |
dc.subject | Citrus | es_ES |
dc.subject | Gray level co-occurrence matrix | es_ES |
dc.subject | Random forests | es_ES |
dc.subject | VHR | es_ES |
dc.subject | Image classification | es_ES |
dc.subject | Semantic segmentation | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/rs13040681 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F246//ESTUDIO DEL ABANDONO DE TIERRAS UTILIZANDO DIFERENTES TÉCNICAS DE TELEDETECCIÓN / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Morell-Monzó, S.; Sebastiá-Frasquet, M.; Estornell Cremades, J. (2021). Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sensing. 13(4):1-18. https://doi.org/10.3390/rs13040681 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/rs13040681 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\428397 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
upv.costeAPC | 2541 | es_ES |