- -

Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fredes, Sandra N. es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Recio Recio, Jorge Abel es_ES
dc.date.accessioned 2022-07-19T18:05:51Z
dc.date.available 2022-07-19T18:05:51Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184445
dc.description.abstract [EN] The inclusion of technological innovation and the development of remote sensing tools in wine production are an efficient and productive factor that supports the production and improves the quality of the wine produced. In this study we explored models based on Sentinel-2 image bands and spectral indices to estimate key wine quality variables, such as phenols (TP), anthocyanins (TA) and color intensity (CI), providing different sensory characteristics of wine. Two Cabernet Sauvignon wine harvest seasons were studied, 2017 and 2018, and models with coefficients of determination (R-2) higher than 60% were obtained for color intensity and total anthocyanins during the first season, both in a period very close to harvest during the first days of April, so the high periodicity of Sentinel 2 becomes strategic. In addition, homogeneous sectors can be identified in the plots for selective harvesting and thus the winery space can be programmed appropriately. These results suggest further work on the number of samples in order to transform it into a useful tool with the potential to define a differentiated harvest and estimate the accumulation of phenolic compounds and the intensity of wine color, key elements in the final quality of the wine. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Phenols es_ES
dc.subject Anthocyanins es_ES
dc.subject Color intensity es_ES
dc.subject Cabernet sauvignon es_ES
dc.subject Precision viticulture es_ES
dc.subject Remote sensing es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs13234951 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Fredes, SN.; Ruiz Fernández, LÁ.; Recio Recio, JA. (2021). Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images. Remote Sensing. 13(23):1-15. https://doi.org/10.3390/rs13234951 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs13234951 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 23 es_ES
dc.relation.pasarela S\452461 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem