- -

Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Francés-Herrero, Emilio es_ES
dc.contributor.author De Miguel-Gómez, Lucía es_ES
dc.contributor.author López-Martínez, Sara es_ES
dc.contributor.author Campo, Hannes es_ES
dc.contributor.author Garcia-Dominguez, Ximo es_ES
dc.contributor.author Diretto, Gianfranco es_ES
dc.contributor.author Faus, Amparo es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.contributor.author Cervelló, Irene es_ES
dc.date.accessioned 2022-07-19T18:06:08Z
dc.date.available 2022-07-19T18:06:08Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 1933-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184452
dc.description.abstract [EN] The oviducts (fallopian tubes in mammals) function as the site of fertilization and provide necessary support for early embryonic development, mainly via embryonic exposure to the tubal microenvironment. The main objective of this study was to create an oviduct-specific extracellular matrix (oviECM) hydrogel rich in bioactive components that mimics the native environment, thus optimizing the developmental trajectories of cultured embryos. Rabbit oviducts were decellularized through SDS treatment and enzymatic digestion, and the acellular tissue was converted into oviductal pre-gel extracellular matrix (ECM) solutions. Incubation of these solutions at 37 degrees C resulted in stable hydrogels with a fibrous structure based on scanning electron microscopy. Histological staining, DNA quantification and colorimetric assays confirmed that the decellularized tissue and hydrogels contained no cellular or nuclear components but retained important components of the ECM, e.g. hyaluronic acid, glycoproteins and collagens. To evaluate the ability of oviECM hydrogels to maintain early embryonic development, two-cell rabbit embryos were cultured on oviECM-coated surfaces and compared to those cultured with standard techniques. Embryo development was similar in both conditions, with 95.9% and 98% of the embryos reaching the late morula/early blastocyst stage by 48 h under standard culture and oviECM conditions, respectively. Metabolomic analysis of culture media in the presence or absence of embryos, however, revealed that the oviECM coating may include signalling molecules and release compounds beneficial to embryo metabolism. es_ES
dc.description.sponsorship This study was supported by Instituto de Salud Carlos III (PI17/01039-CP19/00149 [Irene Cervello]), Ministry of Economy, Industry and Competitiveness (AGL2017-85162-C2-1-R [Francisco Marco], BES-2015-072429 [Ximo Garcia]), Ministry of Science, Innovation and Universities (FPU18/06327 [Emilio Frances]) and Generalitat Valenciana (PROMETEO/2018/137 [Irene Cervello, Lucia de Miguel], ACIF/2017/118 [Sara Lopez]). The proteomics laboratory is a member of ProteoRed, PRB3, and is supported by grant PT17/0019 of the State Plan I+D+i 2013-2016, funded by Instituto de Salud Carlos III and European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Reproductive Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Decellularization es_ES
dc.subject Hydrogel es_ES
dc.subject Oviduct es_ES
dc.subject Fallopian tubes es_ES
dc.subject ECM es_ES
dc.subject Embryo culture es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s43032-020-00446-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F06327/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CP19%2F00149/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PT17%2F0019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072429//BES-2015-072429/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01039/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//Prometeo%2F2018%2F137/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F118/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Francés-Herrero, E.; De Miguel-Gómez, L.; López-Martínez, S.; Campo, H.; Garcia-Dominguez, X.; Diretto, G.; Faus, A.... (2021). Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture. Reproductive Sciences. 28(6):1644-1658. https://doi.org/10.1007/s43032-020-00446-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s43032-020-00446-6 es_ES
dc.description.upvformatpinicio 1644 es_ES
dc.description.upvformatpfin 1658 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 33511539 es_ES
dc.relation.pasarela S\455816 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol RBE. 2015;13:37. https://doi.org/10.1186/s12958-015-0032-1. es_ES
dc.description.references Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17:541–57. https://doi.org/10.1093/humupd/dmr006. es_ES
dc.description.references Carrascosa JP, Horcajadas JA, Moreno-Moya JM. Chapter 15 - The molecular signature of the endometrial receptivity: research and clinical application. In: Horcajadas JA, Gosálvez J, editors. Reproductomics, Academic Press; 2018, p. 279–301. https://doi.org/10.1016/B978-0-12-812571-7.00016-2. es_ES
dc.description.references Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod BioMed Online. 2010;20:453–69. https://doi.org/10.1016/j.rbmo.2009.12.018. es_ES
dc.description.references Mantikou E, Youssef M a. FM, van Wely M, van der Veen F, Al-Inany HG, Repping S, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update 2013;19:210–220. https://doi.org/10.1093/humupd/dms061. es_ES
dc.description.references Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, et al. Considerations regarding embryo culture conditions: from media to epigenetics. Vivo Athens Greece 2018;32:451–60. https://doi.org/10.21873/invivo.11261. es_ES
dc.description.references Young RC, Goloman G. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds. Tissue Eng Part A. 2013;19:2112–9. https://doi.org/10.1089/ten.TEA.2012.0549. es_ES
dc.description.references Santoso EG, Yoshida K, Hirota Y, Aizawa M, Yoshino O, Kishida A, et al. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS One. 2014;9:e103201. https://doi.org/10.1371/journal.pone.0103201. es_ES
dc.description.references Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35:8791–800. https://doi.org/10.1016/j.biomaterials.2014.06.052. es_ES
dc.description.references Hellström M, Moreno-Moya JM, Bandstein S, Bom E, Akouri RR, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487–496.e1. https://doi.org/10.1016/j.fertnstert.2016.03.048. es_ES
dc.description.references Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, López-Bayghen E, Valencia P, Ordorica-Flores R, et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet Lond Engl. 2014;384:329–36. https://doi.org/10.1016/S0140-6736(14)60542-0. es_ES
dc.description.references Greco KV, Jones LG, Obiri-Yeboa I, Ansari T. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair. J Pediatr Adolesc Gynecol. 2018;31:473–9. https://doi.org/10.1016/j.jpag.2018.05.003. es_ES
dc.description.references Liu W-Y, Lin S-G, Zhuo R-Y, Xie Y-Y, Pan W, Lin X-F, et al. Xenogeneic decellularized scaffold: a novel platform for ovary regeneration. Tissue Eng Part C Methods. 2017;23:61–71. https://doi.org/10.1089/ten.tec.2016.0410. es_ES
dc.description.references Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9:252. https://doi.org/10.1186/s13287-018-0971-5. es_ES
dc.description.references DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5:e13039. https://doi.org/10.1371/journal.pone.0013039. es_ES
dc.description.references French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8:4357–64. https://doi.org/10.1016/j.actbio.2012.07.033. es_ES
dc.description.references Young DA, Choi YS, Engler AJ, Christman KL. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 2013;34:8581–8. https://doi.org/10.1016/j.biomaterials.2013.07.103. es_ES
dc.description.references Zhang X, Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun. 2015;456:938–44. https://doi.org/10.1016/j.bbrc.2014.11.004. es_ES
dc.description.references Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME, et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep. 2018;8:10452. https://doi.org/10.1038/s41598-018-28857-1. es_ES
dc.description.references Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A. 2018;106:2448–62. https://doi.org/10.1002/jbm.a.36439. es_ES
dc.description.references Campo H, García-Domínguez X, López-Martínez S, Faus A, Vicente Antón JS, Marco-Jiménez F, et al. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater. 2019;89:126–38. https://doi.org/10.1016/j.actbio.2019.03.004. es_ES
dc.description.references Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30:115. https://doi.org/10.1007/s10856-019-6318-7. es_ES
dc.description.references Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43. https://doi.org/10.1016/j.biomaterials.2011.01.057. es_ES
dc.description.references Johnson TD, Dequach JA, Gaetani R, Ungerleider J, Elhag D, Nigam V, et al. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci. 2014;2014:60283D–744. https://doi.org/10.1039/C3BM60283D. es_ES
dc.description.references Amorim CA. Special issue devoted to a new field of regenerative medicine: reproductive tissue engineering. Ann Biomed Eng. 2017;45:1589–91. https://doi.org/10.1007/s10439-017-1862-0. es_ES
dc.description.references Vianello S, Lutolf MP. Understanding the mechanobiology of early mammalian development through bioengineered models. Dev Cell. 2019;48:751–63. https://doi.org/10.1016/j.devcel.2019.02.024. es_ES
dc.description.references Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M, Hoellrigl A, et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs. 2012;195:377–91. https://doi.org/10.1159/000328712. es_ES
dc.description.references Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, et al. Effect of substrate stiffness on early mouse embryo development. PLoS One. 2012;7:e41717. https://doi.org/10.1371/journal.pone.0041717. es_ES
dc.description.references Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, et al. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun. 2012;3:673. https://doi.org/10.1038/ncomms1671. es_ES
dc.description.references Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11:847–54. https://doi.org/10.1038/nmeth.3016. es_ES
dc.description.references Zhao S, Liu Z-X, Gao H, Wu Y, Fang Y, Wu S-S, et al. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Theriogenology. 2015;84:184–92. https://doi.org/10.1016/j.theriogenology.2015.03.011. es_ES
dc.description.references Yang H, Wu S, Feng R, Huang J, Liu L, Liu F, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther. 2017;8:267. https://doi.org/10.1186/s13287-017-0718-8. es_ES
dc.description.references Hussey GS, Pineda Molina C, Cramer MC, Tyurina YY, Tyurin VA, Lee YC, et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Sci Adv. 2020;6:eaay4361. https://doi.org/10.1126/sciadv.aay4361. es_ES
dc.description.references Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2019;48:2132–53. https://doi.org/10.1007/s10439-019-02408-9. es_ES
dc.description.references Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016;2:e1600502. https://doi.org/10.1126/sciadv.1600502. es_ES
dc.description.references Gu Z, Guo J, Wang H, Wen Y, Gu Q. Bioengineered microenvironment to culture early embryos. Cell Prolif. 2020;53:e12754. https://doi.org/10.1111/cpr.12754. es_ES
dc.description.references Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31:1337–47. https://doi.org/10.1007/s10815-014-0309-x. es_ES
dc.description.references Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reprod Camb Engl. 2012;144:1–10. https://doi.org/10.1530/REP-12-0091. es_ES
dc.description.references Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29:1630–7. https://doi.org/10.1016/j.biomaterials.2007.12.014. es_ES
dc.description.references Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996;93:14440–5. https://doi.org/10.1073/pnas.93.25.14440. es_ES
dc.description.references Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, et al. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics MCP. 2007;6:1638–55. https://doi.org/10.1074/mcp.T600050-MCP200. es_ES
dc.description.references Viudes-de-Castro MP, Marco-Jiménez F, Más Pellicer A, García-Domínguez X, Talaván AM, Vicente JS. A single injection of corifollitropin alfa supplemented with human chorionic gonadotropin increases follicular recruitment and transferable embryos in the rabbit. Reprod Domest Anim Zuchthyg. 2019;54:696–701. https://doi.org/10.1111/rda.13411. es_ES
dc.description.references Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Mol Basel Switz. 2017;22. https://doi.org/10.3390/molecules22081359. es_ES
dc.description.references Cappelli G, Giovannini D, Basso AL, Demurtas OC, Diretto G, Santi C, et al. A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. J Funct Foods. 2018;45:499–511. https://doi.org/10.1016/j.jff.2018.04.007. es_ES
dc.description.references Di Meo F, Aversano R, Diretto G, Demurtas OC, Villano C, Cozzolino S, et al. Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J Funct Foods. 2019;61:103515. https://doi.org/10.1016/j.jff.2019.103515. es_ES
dc.description.references Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. es_ES
dc.description.references Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24. https://doi.org/10.1016/j.matbio.2015.06.003. es_ES
dc.description.references Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70. es_ES
dc.description.references Clerc O, Deniaud M, Vallet SD, Naba A, Rivet A, Perez S, et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 2019;47:D376–81. https://doi.org/10.1093/nar/gky1035. es_ES
dc.description.references Hynes RO. Extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9. https://doi.org/10.1126/science.1176009. es_ES
dc.description.references Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51. https://doi.org/10.1530/JOE-10-0377. es_ES
dc.description.references Zagris N. Extracellular matrix in development of the early embryo. Micron Oxf Engl 1993 2001;32:427–38. https://doi.org/10.1016/s0968-4328(00)00011-1. es_ES
dc.description.references Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309. https://doi.org/10.1146/annurev.cellbio.22.010305.104315. es_ES
dc.description.references Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. https://doi.org/10.1038/nrm3904. es_ES
dc.description.references Leivo I, Vaheri A, Timpl R, Wartiovaara J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev Biol. 1980;76:100–14. https://doi.org/10.1016/0012-1606(80)90365-6. es_ES
dc.description.references Poel WE. Preparation of acellular homogenates from muscle samples. Science. 1948;108:390–1. https://doi.org/10.1126/science.108.2806.390-a. es_ES
dc.description.references Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068. es_ES
dc.description.references Wu J, Ding Q, Dutta A, Wang Y, Huang Y-H, Weng H, et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 2015;16:49–59. https://doi.org/10.1016/j.actbio.2015.01.027. es_ES
dc.description.references Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11:e0148225. https://doi.org/10.1371/journal.pone.0148225. es_ES
dc.description.references Keane TJ, Dziki J, Sobieski E, Smoulder A, Castleton A, Turner N, et al. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J Crohns Colitis. 2017;11:360–8. https://doi.org/10.1093/ecco-jcc/jjw149. es_ES
dc.description.references Wu Y, Wang J, Shi Y, Pu H, Leak RK, Liou AKF, et al. Implantation of brain-derived extracellular matrix enhances neurological recovery after traumatic brain injury. Cell Transplant. 2017;26:1224–34. https://doi.org/10.1177/0963689717714090. es_ES
dc.description.references Ghuman H, Gerwig M, Nicholls FJ, Liu JR, Donnelly J, Badylak SF, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63. https://doi.org/10.1016/j.actbio.2017.09.011. es_ES
dc.description.references Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13. https://doi.org/10.1016/j.actbio.2008.09.013. es_ES
dc.description.references Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232:R1–26. https://doi.org/10.1530/JOE-16-0302. es_ES
dc.description.references Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96:34–45. https://doi.org/10.1095/biolreprod.116.143396. es_ES
dc.description.references Jensen CE, Zachariae F. Studies on the mechanism of ovulation: isolation and analysis of acid mucopolysaccharides in bovine follicular fluid. Acta Endocrinol. 1958;27:356–68. es_ES
dc.description.references Templeton DM. Proteoglycans in cell regulation. Crit Rev Clin Lab Sci. 1992;29:141–84. https://doi.org/10.3109/10408369209114599. es_ES
dc.description.references Kano K, Miyano T, Kato S. Effects of glycosaminoglycans on the development of in vitro-matured and -fertilized porcine oocytes to the blastocyst stage in vitro. Biol Reprod. 1998;58:1226–32. https://doi.org/10.1095/biolreprod58.5.1226. es_ES
dc.description.references Jang G, Lee BC, Kang SK, Hwang WS. Effect of glycosaminoglycans on the preimplantation development of embryos derived from in vitro fertilization and somatic cell nuclear transfer. Reprod Fertil Dev. 2003;15:179–85. https://doi.org/10.1071/rd02054. es_ES
dc.description.references Lane M, Maybach JM, Hooper K, Hasler JF, Gardner DK. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64:70–8. https://doi.org/10.1002/mrd.10210. es_ES
dc.description.references Palasz AT, Rodriguez-Martinez H, Beltran-Breña P, Perez-Garnelo S, Martinez MF, Gutierrez-Adan A, et al. Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol Reprod Dev. 2006;73:1503–11. https://doi.org/10.1002/mrd.20516. es_ES
dc.description.references Figueiredo F, Jones GM, Thouas GA, Trounson AO. The effect of extracellular matrix molecules on mouse preimplantation embryo development in vitro. Reprod Fertil Dev. 2002;14:443–51. https://doi.org/10.1071/rd02007. es_ES
dc.description.references Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Dev Camb Engl. 1993;117:1183–98. es_ES
dc.description.references Turpeenniemi-Hujanen T, Feinberg RF, Kauppila A, Puistola U. Extracellular matrix interactions in early human embryos: implications for normal implantation events. Fertil Steril. 1995;64:132–8. es_ES
dc.description.references Ishihara J, Ishihara A, Fukunaga K, Sasaki K, White MJV, Briquez PS, et al. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat Commun. 2018;9:2163. https://doi.org/10.1038/s41467-018-04525-w. es_ES
dc.description.references Uyar A, Seli E. Metabolomic assessment of embryo viability. Semin Reprod Med. 2014;32:141–52. https://doi.org/10.1055/s-0033-1363556. es_ES
dc.description.references Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72. https://doi.org/10.1093/molehr/gan065. es_ES
dc.description.references Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MSH, et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A. 2004;101:10326–31. https://doi.org/10.1073/pnas.0402597101. es_ES
dc.description.references D’Souza F, Pudakalakatti SM, Uppangala S, Honguntikar S, Salian SR, Kalthur G, et al. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos. Sci Rep. 2016;6. https://doi.org/10.1038/srep37291. es_ES
dc.description.references Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays News Rev Mol Cell Dev Biol. 2002;24:845–9. https://doi.org/10.1002/bies.10137. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem