Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol RBE. 2015;13:37. https://doi.org/10.1186/s12958-015-0032-1.
Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17:541–57. https://doi.org/10.1093/humupd/dmr006.
Carrascosa JP, Horcajadas JA, Moreno-Moya JM. Chapter 15 - The molecular signature of the endometrial receptivity: research and clinical application. In: Horcajadas JA, Gosálvez J, editors. Reproductomics, Academic Press; 2018, p. 279–301. https://doi.org/10.1016/B978-0-12-812571-7.00016-2.
[+]
Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol RBE. 2015;13:37. https://doi.org/10.1186/s12958-015-0032-1.
Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17:541–57. https://doi.org/10.1093/humupd/dmr006.
Carrascosa JP, Horcajadas JA, Moreno-Moya JM. Chapter 15 - The molecular signature of the endometrial receptivity: research and clinical application. In: Horcajadas JA, Gosálvez J, editors. Reproductomics, Academic Press; 2018, p. 279–301. https://doi.org/10.1016/B978-0-12-812571-7.00016-2.
Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod BioMed Online. 2010;20:453–69. https://doi.org/10.1016/j.rbmo.2009.12.018.
Mantikou E, Youssef M a. FM, van Wely M, van der Veen F, Al-Inany HG, Repping S, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update 2013;19:210–220. https://doi.org/10.1093/humupd/dms061.
Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, et al. Considerations regarding embryo culture conditions: from media to epigenetics. Vivo Athens Greece 2018;32:451–60. https://doi.org/10.21873/invivo.11261.
Young RC, Goloman G. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds. Tissue Eng Part A. 2013;19:2112–9. https://doi.org/10.1089/ten.TEA.2012.0549.
Santoso EG, Yoshida K, Hirota Y, Aizawa M, Yoshino O, Kishida A, et al. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS One. 2014;9:e103201. https://doi.org/10.1371/journal.pone.0103201.
Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35:8791–800. https://doi.org/10.1016/j.biomaterials.2014.06.052.
Hellström M, Moreno-Moya JM, Bandstein S, Bom E, Akouri RR, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487–496.e1. https://doi.org/10.1016/j.fertnstert.2016.03.048.
Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, López-Bayghen E, Valencia P, Ordorica-Flores R, et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet Lond Engl. 2014;384:329–36. https://doi.org/10.1016/S0140-6736(14)60542-0.
Greco KV, Jones LG, Obiri-Yeboa I, Ansari T. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair. J Pediatr Adolesc Gynecol. 2018;31:473–9. https://doi.org/10.1016/j.jpag.2018.05.003.
Liu W-Y, Lin S-G, Zhuo R-Y, Xie Y-Y, Pan W, Lin X-F, et al. Xenogeneic decellularized scaffold: a novel platform for ovary regeneration. Tissue Eng Part C Methods. 2017;23:61–71. https://doi.org/10.1089/ten.tec.2016.0410.
Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9:252. https://doi.org/10.1186/s13287-018-0971-5.
DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5:e13039. https://doi.org/10.1371/journal.pone.0013039.
French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8:4357–64. https://doi.org/10.1016/j.actbio.2012.07.033.
Young DA, Choi YS, Engler AJ, Christman KL. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 2013;34:8581–8. https://doi.org/10.1016/j.biomaterials.2013.07.103.
Zhang X, Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun. 2015;456:938–44. https://doi.org/10.1016/j.bbrc.2014.11.004.
Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME, et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep. 2018;8:10452. https://doi.org/10.1038/s41598-018-28857-1.
Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A. 2018;106:2448–62. https://doi.org/10.1002/jbm.a.36439.
Campo H, García-Domínguez X, López-Martínez S, Faus A, Vicente Antón JS, Marco-Jiménez F, et al. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater. 2019;89:126–38. https://doi.org/10.1016/j.actbio.2019.03.004.
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30:115. https://doi.org/10.1007/s10856-019-6318-7.
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43. https://doi.org/10.1016/j.biomaterials.2011.01.057.
Johnson TD, Dequach JA, Gaetani R, Ungerleider J, Elhag D, Nigam V, et al. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci. 2014;2014:60283D–744. https://doi.org/10.1039/C3BM60283D.
Amorim CA. Special issue devoted to a new field of regenerative medicine: reproductive tissue engineering. Ann Biomed Eng. 2017;45:1589–91. https://doi.org/10.1007/s10439-017-1862-0.
Vianello S, Lutolf MP. Understanding the mechanobiology of early mammalian development through bioengineered models. Dev Cell. 2019;48:751–63. https://doi.org/10.1016/j.devcel.2019.02.024.
Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M, Hoellrigl A, et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs. 2012;195:377–91. https://doi.org/10.1159/000328712.
Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, et al. Effect of substrate stiffness on early mouse embryo development. PLoS One. 2012;7:e41717. https://doi.org/10.1371/journal.pone.0041717.
Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, et al. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun. 2012;3:673. https://doi.org/10.1038/ncomms1671.
Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11:847–54. https://doi.org/10.1038/nmeth.3016.
Zhao S, Liu Z-X, Gao H, Wu Y, Fang Y, Wu S-S, et al. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Theriogenology. 2015;84:184–92. https://doi.org/10.1016/j.theriogenology.2015.03.011.
Yang H, Wu S, Feng R, Huang J, Liu L, Liu F, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther. 2017;8:267. https://doi.org/10.1186/s13287-017-0718-8.
Hussey GS, Pineda Molina C, Cramer MC, Tyurina YY, Tyurin VA, Lee YC, et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Sci Adv. 2020;6:eaay4361. https://doi.org/10.1126/sciadv.aay4361.
Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2019;48:2132–53. https://doi.org/10.1007/s10439-019-02408-9.
Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016;2:e1600502. https://doi.org/10.1126/sciadv.1600502.
Gu Z, Guo J, Wang H, Wen Y, Gu Q. Bioengineered microenvironment to culture early embryos. Cell Prolif. 2020;53:e12754. https://doi.org/10.1111/cpr.12754.
Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31:1337–47. https://doi.org/10.1007/s10815-014-0309-x.
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reprod Camb Engl. 2012;144:1–10. https://doi.org/10.1530/REP-12-0091.
Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29:1630–7. https://doi.org/10.1016/j.biomaterials.2007.12.014.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996;93:14440–5. https://doi.org/10.1073/pnas.93.25.14440.
Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, et al. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics MCP. 2007;6:1638–55. https://doi.org/10.1074/mcp.T600050-MCP200.
Viudes-de-Castro MP, Marco-Jiménez F, Más Pellicer A, García-Domínguez X, Talaván AM, Vicente JS. A single injection of corifollitropin alfa supplemented with human chorionic gonadotropin increases follicular recruitment and transferable embryos in the rabbit. Reprod Domest Anim Zuchthyg. 2019;54:696–701. https://doi.org/10.1111/rda.13411.
Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Mol Basel Switz. 2017;22. https://doi.org/10.3390/molecules22081359.
Cappelli G, Giovannini D, Basso AL, Demurtas OC, Diretto G, Santi C, et al. A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. J Funct Foods. 2018;45:499–511. https://doi.org/10.1016/j.jff.2018.04.007.
Di Meo F, Aversano R, Diretto G, Demurtas OC, Villano C, Cozzolino S, et al. Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J Funct Foods. 2019;61:103515. https://doi.org/10.1016/j.jff.2019.103515.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24. https://doi.org/10.1016/j.matbio.2015.06.003.
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
Clerc O, Deniaud M, Vallet SD, Naba A, Rivet A, Perez S, et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 2019;47:D376–81. https://doi.org/10.1093/nar/gky1035.
Hynes RO. Extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9. https://doi.org/10.1126/science.1176009.
Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51. https://doi.org/10.1530/JOE-10-0377.
Zagris N. Extracellular matrix in development of the early embryo. Micron Oxf Engl 1993 2001;32:427–38. https://doi.org/10.1016/s0968-4328(00)00011-1.
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309. https://doi.org/10.1146/annurev.cellbio.22.010305.104315.
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. https://doi.org/10.1038/nrm3904.
Leivo I, Vaheri A, Timpl R, Wartiovaara J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev Biol. 1980;76:100–14. https://doi.org/10.1016/0012-1606(80)90365-6.
Poel WE. Preparation of acellular homogenates from muscle samples. Science. 1948;108:390–1. https://doi.org/10.1126/science.108.2806.390-a.
Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068.
Wu J, Ding Q, Dutta A, Wang Y, Huang Y-H, Weng H, et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 2015;16:49–59. https://doi.org/10.1016/j.actbio.2015.01.027.
Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11:e0148225. https://doi.org/10.1371/journal.pone.0148225.
Keane TJ, Dziki J, Sobieski E, Smoulder A, Castleton A, Turner N, et al. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J Crohns Colitis. 2017;11:360–8. https://doi.org/10.1093/ecco-jcc/jjw149.
Wu Y, Wang J, Shi Y, Pu H, Leak RK, Liou AKF, et al. Implantation of brain-derived extracellular matrix enhances neurological recovery after traumatic brain injury. Cell Transplant. 2017;26:1224–34. https://doi.org/10.1177/0963689717714090.
Ghuman H, Gerwig M, Nicholls FJ, Liu JR, Donnelly J, Badylak SF, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63. https://doi.org/10.1016/j.actbio.2017.09.011.
Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13. https://doi.org/10.1016/j.actbio.2008.09.013.
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232:R1–26. https://doi.org/10.1530/JOE-16-0302.
Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96:34–45. https://doi.org/10.1095/biolreprod.116.143396.
Jensen CE, Zachariae F. Studies on the mechanism of ovulation: isolation and analysis of acid mucopolysaccharides in bovine follicular fluid. Acta Endocrinol. 1958;27:356–68.
Templeton DM. Proteoglycans in cell regulation. Crit Rev Clin Lab Sci. 1992;29:141–84. https://doi.org/10.3109/10408369209114599.
Kano K, Miyano T, Kato S. Effects of glycosaminoglycans on the development of in vitro-matured and -fertilized porcine oocytes to the blastocyst stage in vitro. Biol Reprod. 1998;58:1226–32. https://doi.org/10.1095/biolreprod58.5.1226.
Jang G, Lee BC, Kang SK, Hwang WS. Effect of glycosaminoglycans on the preimplantation development of embryos derived from in vitro fertilization and somatic cell nuclear transfer. Reprod Fertil Dev. 2003;15:179–85. https://doi.org/10.1071/rd02054.
Lane M, Maybach JM, Hooper K, Hasler JF, Gardner DK. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64:70–8. https://doi.org/10.1002/mrd.10210.
Palasz AT, Rodriguez-Martinez H, Beltran-Breña P, Perez-Garnelo S, Martinez MF, Gutierrez-Adan A, et al. Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol Reprod Dev. 2006;73:1503–11. https://doi.org/10.1002/mrd.20516.
Figueiredo F, Jones GM, Thouas GA, Trounson AO. The effect of extracellular matrix molecules on mouse preimplantation embryo development in vitro. Reprod Fertil Dev. 2002;14:443–51. https://doi.org/10.1071/rd02007.
Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Dev Camb Engl. 1993;117:1183–98.
Turpeenniemi-Hujanen T, Feinberg RF, Kauppila A, Puistola U. Extracellular matrix interactions in early human embryos: implications for normal implantation events. Fertil Steril. 1995;64:132–8.
Ishihara J, Ishihara A, Fukunaga K, Sasaki K, White MJV, Briquez PS, et al. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat Commun. 2018;9:2163. https://doi.org/10.1038/s41467-018-04525-w.
Uyar A, Seli E. Metabolomic assessment of embryo viability. Semin Reprod Med. 2014;32:141–52. https://doi.org/10.1055/s-0033-1363556.
Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72. https://doi.org/10.1093/molehr/gan065.
Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MSH, et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A. 2004;101:10326–31. https://doi.org/10.1073/pnas.0402597101.
D’Souza F, Pudakalakatti SM, Uppangala S, Honguntikar S, Salian SR, Kalthur G, et al. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos. Sci Rep. 2016;6. https://doi.org/10.1038/srep37291.
Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays News Rev Mol Cell Dev Biol. 2002;24:845–9. https://doi.org/10.1002/bies.10137.
[-]