- -

Composition operators on spaces of double Dirichlet series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composition operators on spaces of double Dirichlet series

Mostrar el registro completo del ítem

Bayart, F.; Castillo-Medina, J.; Garcia, D.; Maestre, M.; Sevilla Peris, P. (2021). Composition operators on spaces of double Dirichlet series. Revista Matemática Complutense. 34(1):215-237. https://doi.org/10.1007/s13163-019-00345-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184559

Ficheros en el ítem

Metadatos del ítem

Título: Composition operators on spaces of double Dirichlet series
Autor: Bayart, Frederic Castillo-Medina, Jaime Garcia, Domingo Maestre, Manuel Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study composition operators on spaces of double Dirichlet series, focusing our interest on the characterization of the composition operators of the space of bounded double Dirichlet series H infinity(C+2) We also ...[+]
Palabras clave: Double Dirichlet series , Composition operator , Superposition operator
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Matemática Complutense. (issn: 1139-1138 )
DOI: 10.1007/s13163-019-00345-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13163-019-00345-8
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
Tipo: Artículo

References

Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145(10), 4449–4464 (2017)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Cámera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Harmonic Analysis and Operator Theory (Caracas, 1994), Volume 189 of Contemporary Mathematics, pp. 103–116. American Mathematical Society, Providence, RI (1995) [+]
Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145(10), 4449–4464 (2017)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Cámera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Harmonic Analysis and Operator Theory (Caracas, 1994), Volume 189 of Contemporary Mathematics, pp. 103–116. American Mathematical Society, Providence, RI (1995)

Castillo-Medina, J., García, D., Maestre, M.: Isometries between spaces of multiple Dirichlet series. J. Math. Anal. Appl. 472(1), 526–545 (2019)

Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet series from the infinite dimensional point of view. Funct. Approx. Comment. Math. 59(2), 285–304 (2018)

Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, Volume 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)

Gordon, J., Hedenmalm, H.: The composition operators on the space of Dirichlet series with square summable coefficients. Mich. Math. J. 46(2), 313–329 (1999)

Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$. Duke Math. J. 86(1), 1–37 (1997)

Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series, Volume 2 of Harish–Chandra Research Institute Lecture Notes. Hindustan Book Agency, New Delhi (2013)

Queffélec, H., Seip, K.: Approximation numbers of composition operators on the $$H^2$$ space of Dirichlet series. J. Funct. Anal. 268(6), 1612–1648 (2015)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem