- -

In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil Megías, Antonio es_ES
dc.contributor.author Quintero-Igeño, Pedro-Manuel es_ES
dc.contributor.author Mares, Andrea es_ES
dc.contributor.author Serra, Juan es_ES
dc.contributor.author Sánchez-Nevárez, Manuel Ignacio es_ES
dc.contributor.author Miralles, Manuel es_ES
dc.date.accessioned 2022-07-21T18:03:37Z
dc.date.available 2022-07-21T18:03:37Z
dc.date.issued 2021-09 es_ES
dc.identifier.issn 0090-6964 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184630
dc.description.abstract [EN] During the last years, several kinds of Embolic Protection Devices (EPD) have been developed, with the aim of minimizing complication caused by thrombi generated during Carotid Artery Stenting (CAS). These devices are capable of capturing small particles generated during the intervention, avoiding cerebral stroke and improving the outcomes of the surgery. However, they have associated complications, like the increase on flow resistance associated by their use or the lack of knowledge on their actual filtration efficiency for thrombi of low size. Current work proposes a validated computational methodology in order to predict the hemodynamic features and filtering efficiency of a commercial EPD. It will be observed how Computational Fluid Dynamics predicts pressure drop with fair agreement with the experimental measurements. Finally, this work analyzes the filtration efficiency and the influence of the distribution of injected particles on this parameter. The capabilities of the filter for retaining particles of diameter below the pore size is, additionally, discussed. es_ES
dc.description.sponsorship This study ws funded by upv-la fe 2020 subprograma proyectos de innovacion (Grant No. DPECFD). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject Embolic protection device es_ES
dc.subject Discrete element method es_ES
dc.subject Filtration efficiency es_ES
dc.subject Hemodynamics es_ES
dc.subject.classification EXPRESION GRAFICA ARQUITECTONICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-021-02846-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV/SUBPROGRAMA PARA EL DESARROLLO DE PROYECTOS DE INNOVACIÓN UPV/IIS LA FE/PI2020-11/ES/Prototipo de dispositivo de protección embólica: Análisis de eficacia y resistencia al flujo mediante mecánica de fluidos computacional/DPECFD
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Expresión Gráfica Arquitectónica - Departament d'Expressió Gràfica Arquitectònica es_ES
dc.description.bibliographicCitation Gil Megías, A.; Quintero-Igeño, P.; Mares, A.; Serra, J.; Sánchez-Nevárez, MI.; Miralles, M. (2021). In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device. Annals of Biomedical Engineering. 49(9):2659-2670. https://doi.org/10.1007/s10439-021-02846-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10439-021-02846-4 es_ES
dc.description.upvformatpinicio 2659 es_ES
dc.description.upvformatpfin 2670 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 34405319 es_ES
dc.relation.pasarela S\453037 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Hospital Universitari i Politècnic La Fe es_ES
dc.description.references Anderson Jr, J. D. Fundamental of Aerodynamics. McGraw-Hill Education, 2010. es_ES
dc.description.references Coggia, M., O. Goëau-Brissonnière, J. L. Duval, J. P. Leschi, M. Letort, and M. D. Nagel. Embolic risk of the different stages of carotid bifurcation balloon angioplasty: an experimental study. J. Vasc. Surg. 31:550–557, 2000. es_ES
dc.description.references Cundall, P. A., and O. D. L. Strack. A discrete numerical model for granular assemblies. Géotechnique. 29:47–65, 1979. es_ES
dc.description.references Deyranlou, A., J. H. Naish, C. A. Miller, A. Revell, and A. Keshmiri. Numerical study of atrial fibrillation effects on flow distribution in aortic circulation. Ann. Biomed. Eng. 48:1–18, 2020. es_ES
dc.description.references Finol, E. A., C. M. Scotti, I. Verdinelli, C. H. Amon, and M. H. Wholey. Performance assessment of embolic protection filters for carotid artery stenting. Model. Med. Biol. VI. 1:133–142, 2005. es_ES
dc.description.references Finol, E. A., G. M. Siewiorek, C. M. Scotti, M. H. M. H. Wholey, and M. H. M. H. Wholey. Wall apposition assessment and performance comparison of distal protection filters. J. Endovasc. Ther. 15:177–185, 2008. es_ES
dc.description.references Graf, C., and J. P. Barras. Rheological properties of human blood plasma—a comparison of measurements with three different viscometers. Experientia. 35:224–225, 1979. es_ES
dc.description.references Haidekker, M. A., A. G. Tsai, T. Brady, H. Y. Stevens, J. A. Frangos, E. Theodorakis, and M. Intaglietta. A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am. J. Physiol. Heart Circ. Physiol. 282:H1609–H1614, 2002. es_ES
dc.description.references Hart, J. P., P. Peeters, J. Verbist, K. Deloose, and M. Bosiers. Do device characteristics impact outcome in carotid artery stenting? J. Vasc. Surg. 44:725–730, 2006. es_ES
dc.description.references Heistad, D. D., M. L. Marcus, and S. Mueller. Measurement of cerebral blood flow with microspheres. Arch. Neurol. 34:657–659, 1977. es_ES
dc.description.references Hendriks, J. M., J. D. Zindler, A. Van Der Lugt, P. M. T. Pattynama, M. R. H. M. Van Sambeek, J. L. Bosch, and L. C. Van Dijk. Embolic protection filters for carotid stenting: differences in flow obstruction depending on filter construction. J. Endovasc. Ther. 13:47–50, 2006. es_ES
dc.description.references Howell, M., Z. Krajcer, K. Dougherty, N. Strickman, M. Skolkin, B. Toombs, and D. Paniagua. Correlation of periprocedural systolic blood pressure changes with neurological events in high-risk carotid stent patients. J. Endovasc. Ther. 9:810–816, 2002. es_ES
dc.description.references Johnson, S., S. Duffy, G. Gunning, M. Gilvarry, J. P. McGarry, and P. E. McHugh. Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Ann. Biomed. Eng. 45:2494–2508, 2017. es_ES
dc.description.references Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J. Non-Newton. Fluid Mech. 207:42–52, 2014. es_ES
dc.description.references Kurzhals, A., J. B. Matthies, R. Andresen, C. Wissgott, K. P. Schmitz, N. Grabow, and W. Schmidt. Efficiency test of current carotid embolic protection devices. Biomed. Tech. 62:349–355, 2017. es_ES
dc.description.references Kwon, B. J., M. H. Han, H. S. Kang, and C. Jung. Protection filter-related events in extracranial carotid artery stenting: a single-center experience. J. Endovasc. Ther. 13:711–722, 2006. es_ES
dc.description.references Kwon, O. K., S. H. Kim, E. A. Jacobsen, and M. P. Marks. Clinical implications of internal carotid artery flow impairment caused by filter occlusion during carotid artery stenting. Am. J. Neuroradiol. 33:494–499, 2012. es_ES
dc.description.references Lee, S. H., S. Kang, N. Hur, and S.-K. Jeong. A fluid-structure interaction analysis on hemodynamics in carotid artery based on patient-specific clinical data. J. Mech. Sci. Technol. 26:3821–3831, 2012. es_ES
dc.description.references Louvelle, L., M. Doyle, G. Van Arsdell, C. Amon, G. Van Arsdell, and C. Amon. The effect of geometric and hemodynamic parameters on blood flow efficiency in repaired tetralogy of fallot patients. Ann. Biomed. Eng. 2021. https://doi.org/10.1007/s10439-021-02771-6. es_ES
dc.description.references Markus, H. S., A. King, M. Shipley, R. Topakian, M. Cullinane, S. Reihill, N. M. Bornstein, and A. Schaafsma. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. Lancet Neurol. 9:663–671, 2010. es_ES
dc.description.references Menter, F. R. Zonal two equation κ-ω turbulence models for aerodynamic flows. AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993, 1993. es_ES
dc.description.references Montorsi, P., L. Caputi, S. Galli, E. Ciceri, G. Ballerini, M. Agrifoglio, P. Ravagnani, D. Trabattoni, G. Pontone, F. Fabbiocchi, A. Loaldi, E. Parati, D. Andreini, F. Veglia, and A. L. Bartorelli. Microembolization during carotid artery stenting in patients with high-risk, lipid-rich plaque: a randomized trial of proximal versus distal cerebral protection. J. Am. Coll. Cardiol. 58:1656–1663, 2011. es_ES
dc.description.references Morris, D. R., K. Ayabe, T. Inoue, N. Sakai, R. Bulbulia, A. Halliday, and S. Goto. Evidence-based carotid interventions for stroke prevention: state-of-the-art review. J Atheroscler Thromb 24:0–000, 2017. es_ES
dc.description.references Mousa, A. Y., J. E. Campbell, A. F. Aburahma, and M. C. Bates. Current update of cerebral embolic protection devices. J. Vasc. Surg. 56:1429–1437, 2012. es_ES
dc.description.references Mukherjee, D., N. D. Jani, J. Narvid, and S. C. Shadden. The role of circle of willis anatomy variations in cardio-embolic stroke: a patient-specific simulation based study. Ann. Biomed. Eng. 46:1128–1145, 2018. es_ES
dc.description.references Nevárez, M. I. S., E. P. Andani, and M. M. Hernández. Hemodynamic impact analysis of mesh-type embolic protection devices in an in vitro model. Angiologia. 72:178–185, 2020. es_ES
dc.description.references Papamanolis, L., H. J. Kim, C. Jaquet, M. Sinclair, M. Schaap, I. Danad, P. van Diemen, P. Knaapen, L. Najman, H. Talbot, C. A. Taylor, and I. Vignon-Clementel. Myocardial perfusion simulation for coronary artery disease: a coupled patient-specific multiscale model. Ann. Biomed. Eng. 49:1432–1447, 2021. es_ES
dc.description.references Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2012. es_ES
dc.description.references Di Renzo, A., and F. P. Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59:525–541, 2004. es_ES
dc.description.references Ryan, N. W., and M. M. Johnson. Transistion from laminar to turbulent flow in pipes. AIChE J. 5:433–435, 1959. es_ES
dc.description.references Shadden, S. C., and A. Arzani. Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Eng. 43:41–58, 2014. es_ES
dc.description.references Siewiorek, G. M., M. K. Eskandari, and E. A. Finol. The AngioguardTM embolic protection device. Expert Rev. Med. Devices. 5:287–296, 2008. es_ES
dc.description.references Siewiorek, G. M., and E. A. Finol. Computational modeling of distal protection filters. J. Endovasc. Ther. 17:777–788, 2010. https://doi.org/10.1583/10-3178.1. es_ES
dc.description.references Siewiorek, G. M., and E. A. Finol. Experimental and Computational Evaluation of Embolic Protection. ASME 2010 Summer Bioengineering Conference, SBC 2010 627–628, 2013. https://doi.org/10.1115/SBC2010-19693 es_ES
dc.description.references Siewiorek, G. M., R. T. Krafty, M. H. Wholey, and E. A. Finol. The association of clinical variables and filter design with carotid artery stenting thirty-day outcome. Eur. J. Vasc. Endovasc. Surg. 42:282–291, 2011. es_ES
dc.description.references Siewiorek, G. M., M. H. Wholey, and E. A. Finol. Vascular resistance in the carotid artery: an in vitro investigation of embolic protection filters. J. Vasc. Interv. Radiol. 19:1467–1476, 2008. es_ES
dc.description.references Siewiorek, G. M., M. H. Wholey, and E. A. Finol. In vitro performance assessment of distal protection filters: Pulsatile flow conditions. Journal of Endovascular Therapy. 16:735–743, 2009. es_ES
dc.description.references Spiegel, M., T. Redel, J. J. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A. Doerfler, and C. Karmonik. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput. Methods Biomech. Biomed. Eng. 14:9–22, 2011. es_ES
dc.description.references The American Society of Mechanical Engineers. V&V 40-2018 Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. 2018. es_ES
dc.description.references Traenka, C., S. T. Engelter, M. M. Brown, J. Dobson, C. Frost, and L. H. Bonati. Silent brain infarcts on diffusion-weighted imaging after carotid revascularisation: a surrogate outcome measure for procedural stroke? A systematic review and meta-analysis. Eur. Stroke J. 4:127–143, 2019. es_ES
dc.description.references Wilcox, D. C. Multiscale model for turbulent flows. AIAA J. 26:1311–1320, 1988. es_ES
dc.description.references Zhou, W., B. D. Baughman, S. Soman, M. Wintermark, L. C. Lazzeroni, E. Hitchner, J. Bhat, and A. Rosen. Volume of subclinical embolic infarct correlates to long-term cognitive changes after carotid revascularization. J. Vasc. Surg. 65:686–694, 2017. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem