- -

Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.contributor.author Safont, Gonzalo es_ES
dc.date.accessioned 2022-07-22T18:06:11Z
dc.date.available 2022-07-22T18:06:11Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184691
dc.description.abstract [EN] In this work, we propose a new method for oversampling the training set of a classifier, in a scenario of extreme scarcity of training data. It is based on two concepts: Generative Adversarial Networks (GAN) and vector Markov Random Field (vMRF). Thus, the generative block of GAN uses the vMRF model to synthesize surrogates by the Graph Fourier Transform. Then, the discriminative block implements a linear discriminant on features measuring clique similarities between the synthesized and the original instances. Both blocks iterate until the linear discriminant cannot discriminate the synthetic from the original instances. We have assessed the new method, called Generative Adversarial Network Synthesis for Oversampling (GANSO), with both simulated and real data in experiments where the classifier is to be trained with just 3 or 5 instances. The applications consisted of classification of stages of neuropsychological tests using electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data and classification of sleep stages using electrocardiographic (ECG) data. We have verified that GANSO can effectively improve the classifier performance, while the benchmark method SMOTE is not appropriate to deal with such a small size of the training set. es_ES
dc.description.sponsorship This work was supported by Spanish Administration (Ministerio de Ciencia, Innovacion y Universidades) and European Union (FEDER) under grant TEC2017-84743-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Classifier training es_ES
dc.subject Oversampling es_ES
dc.subject Generative adversarial networks es_ES
dc.subject Markov random fields es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2020.113819 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Salazar Afanador, A.; Vergara Domínguez, L.; Safont, G. (2021). Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets. Expert Systems with Applications. 163:1-12. https://doi.org/10.1016/j.eswa.2020.113819 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2020.113819 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 163 es_ES
dc.relation.pasarela S\462762 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem