Mostrar el registro completo del ítem
Salazar Afanador, A.; Vergara Domínguez, L.; Safont, G. (2021). Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets. Expert Systems with Applications. 163:1-12. https://doi.org/10.1016/j.eswa.2020.113819
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184691
Título: | Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In this work, we propose a new method for oversampling the training set of a classifier, in a scenario of extreme scarcity of training data. It is based on two concepts: Generative Adversarial Networks (GAN) and vector ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.eswa.2020.113819 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|