- -

Early Prediction of Students at Risk of Failing a Face-to-Face Course in Power Electronic Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Early Prediction of Students at Risk of Failing a Face-to-Face Course in Power Electronic Systems

Mostrar el registro completo del ítem

Alcaraz, R.; Martínez-Rodrigo, A.; Zangróniz, R.; Rieta, JJ. (2021). Early Prediction of Students at Risk of Failing a Face-to-Face Course in Power Electronic Systems. IEEE Transactions on Learning Technologies. 14(5):590-603. https://doi.org/10.1109/TLT.2021.3118279

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184795

Ficheros en el ítem

Metadatos del ítem

Título: Early Prediction of Students at Risk of Failing a Face-to-Face Course in Power Electronic Systems
Autor: Alcaraz, Raúl Martínez-Rodrigo, Arturo Zangróniz, Roberto Rieta, J J
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Early warning systems (EWSs) have proven to be useful in identifying students at risk of failing both online and conventional courses. Although some general systems have reported acceptable ability to work in modules ...[+]
Palabras clave: Power electronics , Data mining , Input variables , Alarm systems , Task analysis , Prediction algorithms , Magnetic circuits , At-risk students , Early warning system (EWS) , Educational data mining (EDM) , Performance prediction , Power electronic systems
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Transactions on Learning Technologies. (eissn: 1939-1382 )
DOI: 10.1109/TLT.2021.3118279
Editorial:
IEEE
Versión del editor: https://doi.org/10.1109/TLT.2021.3118279
Código del Proyecto:
info:eu-repo/grantAgreement/FEDER//2018%2F11744/
Agradecimientos:
This work was supported in part by the Research Group in Electronic, Biomedical, and Telecommunication Engineering through the University of Castilla-La Mancha and the European Regional Development Fund under Grant 2018/11744, ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem