- -

Self-learning for weakly supervised Gleason grading of local patterns

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Self-learning for weakly supervised Gleason grading of local patterns

Show full item record

Silva-Rodríguez, J.; Colomer, A.; Dolz, J.; Naranjo Ornedo, V. (2021). Self-learning for weakly supervised Gleason grading of local patterns. IEEE Journal of Biomedical and Health Informatics. 25(8):3094-3104. https://doi.org/10.1109/JBHI.2021.3061457

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184848

Files in this item

Item Metadata

Title: Self-learning for weakly supervised Gleason grading of local patterns
Author: Silva-Rodríguez, Julio Colomer, Adrián Dolz, Jose Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] Prostate cancer is one of the main diseases affecting men worldwide. The gold standard for diagnosis and prognosis is the Gleason grading system. In this process, pathologists manually analyze prostate histology slides ...[+]
Subjects: Gleason grading , Prostate cancer , Self-learning , Weakly supervised , Whole slide images
Copyrigths: Reserva de todos los derechos
Source:
IEEE Journal of Biomedical and Health Informatics. (issn: 2168-2194 )
DOI: 10.1109/JBHI.2021.3061457
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/JBHI.2021.3061457
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/
Description: © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Thanks:
This work was supported by the Spanish Ministry of Economy and Competitiveness through Projects DPI2016-77869 and PID2019-105142RB-C21.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record