- -

Self-learning for weakly supervised Gleason grading of local patterns

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Self-learning for weakly supervised Gleason grading of local patterns

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Dolz, Jose es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-07-27T18:05:44Z
dc.date.available 2022-07-27T18:05:44Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 2168-2194 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184848
dc.description © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Prostate cancer is one of the main diseases affecting men worldwide. The gold standard for diagnosis and prognosis is the Gleason grading system. In this process, pathologists manually analyze prostate histology slides under microscope, in a high time-consuming and subjective task. In the last years, computer-aided-diagnosis (CAD) systems have emerged as a promising tool that could support pathologists in the daily clinical practice. Nevertheless, these systems are usually trained using tedious and prone-to-error pixel-level annotations of Gleason grades in the tissue. To alleviate the need of manual pixel-wise labeling, just a handful of works have been presented in the literature. Furthermore, despite the promising results achieved on global scoring the location of cancerous patterns in the tissue is only qualitatively addressed. These heatmaps of tumor regions, however, are crucial to the reliability of CAD systems as they provide explainability to the system's output and give confidence to pathologists that the model is focusing on medical relevant features. Motivated by this, we propose a novel weakly-supervised deeplearning model, based on self-learning CNNs, that leverages only the global Gleason score of gigapixel whole slide images during training to accurately perform both, grading of patch-level patterns and biopsy-level scoring. To evaluate the performance of the proposed method, we perform extensive experiments on three different external datasets for the patch-level Gleason grading, and on two different test sets for global Grade Group prediction. We empirically demonstrate that our approach outperforms its supervised counterpart on patch-level Gleason grading by a large margin, as well as state-of-the-art methods on global biopsylevel scoring. Particularly, the proposed model brings an average improvement on the Cohen's quadratic kappa (kappa) score of nearly 18% compared to full-supervision for the patch-level Gleason grading task. This suggests that the absence of the annotator's bias in our approach and the capability of using large weakly labeled datasets during training leads to higher performing and more robust models. Furthermore, raw features obtained from the patchlevel classifier showed to generalize better than previous approaches in the literature to the subjective global biopsylevel scoring. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness through Projects DPI2016-77869 and PID2019-105142RB-C21. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Journal of Biomedical and Health Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gleason grading es_ES
dc.subject Prostate cancer es_ES
dc.subject Self-learning es_ES
dc.subject Weakly supervised es_ES
dc.subject Whole slide images es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Self-learning for weakly supervised Gleason grading of local patterns es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JBHI.2021.3061457 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Silva-Rodríguez, J.; Colomer, A.; Dolz, J.; Naranjo Ornedo, V. (2021). Self-learning for weakly supervised Gleason grading of local patterns. IEEE Journal of Biomedical and Health Informatics. 25(8):3094-3104. https://doi.org/10.1109/JBHI.2021.3061457 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JBHI.2021.3061457 es_ES
dc.description.upvformatpinicio 3094 es_ES
dc.description.upvformatpfin 3104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 33621184 es_ES
dc.relation.pasarela S\429273 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem