Mostrar el registro sencillo del ítem
dc.contributor.author | Calabuig, J. M. | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2022-09-05T18:03:35Z | |
dc.date.available | 2022-09-05T18:03:35Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1385-1292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/185287 | |
dc.description.abstract | [EN] We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators. This result gives the celebrated factorization theorem of Pisier for (q, 1)-summing operators acting in C(K)-spaces. As far as we know, none of the known versions of the proof uses the separation argument presented here, which is essentially the same that proves Pietsch Domination Theorem for p-summing operators. Based on this proof, we propose an equivalent formulation of the main summability properties for operators, which allows to consider a broad class of summability properties in Banach spaces. As a consequence, we are able to show new versions of the Dvoretzky-Rogers Theorem involving other notions of summability, and analyze some weighted extensions of the q-Orlicz property. | es_ES |
dc.description.sponsorship | Both authors were supported by the Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (Spain) and FEDER, the first author under project PGC2018-095366-B-100 and the second under project MTM2016-77054-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Positivity | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Summability | es_ES |
dc.subject | Orlicz property | es_ES |
dc.subject | Factorization space | es_ES |
dc.subject | Operator | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11117-021-00811-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calabuig, JM.; Sánchez Pérez, EA. (2021). Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces. Positivity. 25(3):1199-1214. https://doi.org/10.1007/s11117-021-00811-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11117-021-00811-y | es_ES |
dc.description.upvformatpinicio | 1199 | es_ES |
dc.description.upvformatpfin | 1214 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\458350 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD | es_ES |
dc.description.references | Achour, D., Dahia, E., Rueda, P., Sánchez-Pérez, E.A.: Domination spaces and factorization of linear and multilinear summing operators. Quest. Math. 39(8), 1071–1092 (2016) | es_ES |
dc.description.references | Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001) | es_ES |
dc.description.references | Defant, A., Floret, K.: Tensor norm and operator ideals. Elseiver, Amsterdam (1993) | es_ES |
dc.description.references | Defant, A., Sánchez Pérez, E.A.: Maurey-Rosenthal factorization of positive operators and convexity. Math. Anal. Appl. 297, 771–790 (2004) | es_ES |
dc.description.references | Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Cambridge Phil. Soc. 146(1), 57–66 (2009) | es_ES |
dc.description.references | Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995) | es_ES |
dc.description.references | Jarchow, H., Matter, U.: Interpolative construction for operator ideals. Note Math. 8(1), 45–56 (1988) | es_ES |
dc.description.references | Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Archiv. Math. 61(2), 183–200 (1993) | es_ES |
dc.description.references | López Molina, J.A., Sánchez Pérez, E.A.: The associated tensor norm to (q, p)-absolutely summing operators on C(K)-spaces. Czech. Math. J. 47(4), 627–631 (1997) | es_ES |
dc.description.references | Matter, U.: Absolutely continuous operators and super-reflexivity. Math. Nachr. 130(1), 193–216 (1987) | es_ES |
dc.description.references | Matter, U.: Factoring through interpolation spaces and super-reflexive Banach spaces. Rev. Roumaine Math. Pure Appl. 34(2), 147–156 (1989) | es_ES |
dc.description.references | Maurey, B.: Theorémes de factorisation pour les opèrateurs linéaires à valeurs dans les spaces $$L^p$$. Asterisque 11, 1–166 (1974) | es_ES |
dc.description.references | Pisier, G.: Factorization of operators through $$L_{p\infty }$$ or $$L_{p1}$$ and noncommutative generalizations. Math. Ann. 276(1), 105–136 (1986) | es_ES |
dc.description.references | Rosenthal, H.P.: On subspaces of $$L_{p}$$. Ann. Math. 97, 344–373 (1973) | es_ES |
dc.description.references | Talagrand, M.: Cotype of operators from C(K). Invent. Math. 107, 1–40 (1992) | es_ES |
dc.description.references | Talagrand, M.: Cotype and (q,1)-summing norm in a Banach space. Invent. Math. 110, 545–556 (1992) | es_ES |