- -

Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces

Mostrar el registro completo del ítem

Calabuig, JM.; Sánchez Pérez, EA. (2021). Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces. Positivity. 25(3):1199-1214. https://doi.org/10.1007/s11117-021-00811-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185287

Ficheros en el ítem

Metadatos del ítem

Título: Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces
Autor: Calabuig, J. M. Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators. This result gives the celebrated factorization theorem of Pisier for (q, 1)-summing operators acting in C(K)-spaces. As ...[+]
Palabras clave: Summability , Orlicz property , Factorization space , Operator
Derechos de uso: Reserva de todos los derechos
Fuente:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-021-00811-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11117-021-00811-y
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION/
info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/
Agradecimientos:
Both authors were supported by the Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (Spain) and FEDER, the first author under project PGC2018-095366-B-100 and the second under project ...[+]
Tipo: Artículo

References

Achour, D., Dahia, E., Rueda, P., Sánchez-Pérez, E.A.: Domination spaces and factorization of linear and multilinear summing operators. Quest. Math. 39(8), 1071–1092 (2016)

Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001)

Defant, A., Floret, K.: Tensor norm and operator ideals. Elseiver, Amsterdam (1993) [+]
Achour, D., Dahia, E., Rueda, P., Sánchez-Pérez, E.A.: Domination spaces and factorization of linear and multilinear summing operators. Quest. Math. 39(8), 1071–1092 (2016)

Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001)

Defant, A., Floret, K.: Tensor norm and operator ideals. Elseiver, Amsterdam (1993)

Defant, A., Sánchez Pérez, E.A.: Maurey-Rosenthal factorization of positive operators and convexity. Math. Anal. Appl. 297, 771–790 (2004)

Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Cambridge Phil. Soc. 146(1), 57–66 (2009)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995)

Jarchow, H., Matter, U.: Interpolative construction for operator ideals. Note Math. 8(1), 45–56 (1988)

Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Archiv. Math. 61(2), 183–200 (1993)

López Molina, J.A., Sánchez Pérez, E.A.: The associated tensor norm to (q, p)-absolutely summing operators on C(K)-spaces. Czech. Math. J. 47(4), 627–631 (1997)

Matter, U.: Absolutely continuous operators and super-reflexivity. Math. Nachr. 130(1), 193–216 (1987)

Matter, U.: Factoring through interpolation spaces and super-reflexive Banach spaces. Rev. Roumaine Math. Pure Appl. 34(2), 147–156 (1989)

Maurey, B.: Theorémes de factorisation pour les opèrateurs linéaires à valeurs dans les spaces $$L^p$$. Asterisque 11, 1–166 (1974)

Pisier, G.: Factorization of operators through $$L_{p\infty }$$ or $$L_{p1}$$ and noncommutative generalizations. Math. Ann. 276(1), 105–136 (1986)

Rosenthal, H.P.: On subspaces of $$L_{p}$$. Ann. Math. 97, 344–373 (1973)

Talagrand, M.: Cotype of operators from C(K). Invent. Math. 107, 1–40 (1992)

Talagrand, M.: Cotype and (q,1)-summing norm in a Banach space. Invent. Math. 110, 545–556 (1992)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem