- -

Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits

Show full item record

Miranda-Gómez, R.; Cabadas-Báez, HV.; Antonio-Némiga, X.; Dávila-Hernández, N. (2022). Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits. Virtual Archaeology Review. 13(27):49-65. https://doi.org/10.4995/var.2022.16106

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185323

Files in this item

Item Metadata

Title: Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits
Secondary Title: Integración geoespacial para mapear asentamientos prehispánicos en los límites del imperio azteca
Author: Miranda-Gómez, Raúl Cabadas-Báez, Héctor V. Antonio-Némiga, Xanat Dávila-Hernández, Norma
Issued date:
Abstract:
[EN] Mexico s vast archaeological research tradition has increased with the use of remote sensing technologies; however, this recent approach is still costly in emerging market economies. In addition, the scales of ...[+]


[ES] México tiene una vasta tradición de investigación arqueológica que, en las últimas décadas, se ha incrementado con el uso de tecnologías de percepción remota; sin embargo, este enfoque sigue siendo costoso en el ...[+]
Subjects: Mesoamerican Postclassic , Aztec Empire , Sentinel-2 optical sensors , Digital Aerial Photogrammetry (DAP) , Normalized Difference Vegetation Index (NDVI) , Unmanned Aerial Vehicles (UAVs) , Posclásico mesoamericano , Imperio azteca , Sensores ópticos Sentinel-2 , Vehículo aéreo no tripulado (VANT) , Fotogrametría digital aérea (DAP) , Índice de vegetación de diferencia normalizada (NDVI)
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Virtual Archaeology Review. (eissn: 1989-9947 )
DOI: 10.4995/var.2022.16106
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/var.2022.16106
Type: Artículo

Location


 

References

Abate, N., Elfadaly, A., Masini, N., & Lasaponara, R. (2020). Multitemporal 2016-2018 Sentinel-2 data enhancement for landscape archaeology: the case study of the Foggia Province, Southern Italy. Remote Sensing, 12(8), 1309. https://doi.org/10.3390/rs12081309

Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones, 4(3), 46. https://doi.org/10.3390/drones4030046

Agapiou, A., Alexakis, D. D., Sarris, A., & Hadjimitsis, D. G. (2014). Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176 [+]
Abate, N., Elfadaly, A., Masini, N., & Lasaponara, R. (2020). Multitemporal 2016-2018 Sentinel-2 data enhancement for landscape archaeology: the case study of the Foggia Province, Southern Italy. Remote Sensing, 12(8), 1309. https://doi.org/10.3390/rs12081309

Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones, 4(3), 46. https://doi.org/10.3390/drones4030046

Agapiou, A., Alexakis, D. D., Sarris, A., & Hadjimitsis, D. G. (2014). Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176

Albores, Z. B. (2006). Una travesía conceptual del Matlatzinco al Valle de Toluca. Anales de Antropología, 40(1), 253-282. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/antropologia/article/view/9961/pdf_123

Arana, R. (1990). Proyecto Coatlán. Área Tonatico-Pilcaya. Colección científica. Serie Arqueología. Ciudad de México: Instituto Nacional de Antropología e Historia.

Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Science, 7(6), 637-650. https://doi.org/10.5194/nhess-7-637-2007

Banning, E. B., Hawkins, A. L., & Stewart, S. T. (2006). Detection functions for archaeological survey. American Antiquity, 71(4), 723-742. https://doi.org/10.2307/40035886

Barlow, R. H. (1992). La frontera tarasca, in J. Monjaras-Ruiz, E. Limón, & M. de la C.Paillés (Eds), Obras de Robert Barlow,Volumen. 4, La extensión del imperio de los culhua mexica (pp. 34-45). Puebla: INAH y Universidad de las Américas.

Bennett, R., Welham, K., Hill, R., & Ford, A. (2012). The application of vegetation indices for the prospection of archaeological features in grass-dominated environments. Archaeological Prospection, 19(3), 209-218. https://doi.org/10.1002/arp.1429

Berdan, F. (1996). The tributary provinces. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith & E. Umberger (Eds.), Aztec Imperial Strategies (pp- 115-135). Washington DC: Dumbarton Oaks.

Berdan, F. (2017). Late Postclassic Mesoamerican trade networks and imperial expansion. Journal of Globalization Studies, 8(1), 14-29. Retrieved July 07, 2021, from https://www.sociostudies.org/journal/articles/939197/

Borejsza, A. (2018). Las nueve reencarnaciones de Matlatzinco. Comentarios acerca de la estructura del altepetl y un intento más de acomodar el rompecabezas terminológico matlatzinca. Anales de Antropología, 52(2), 71-93. https://doi.org/10.22201/iia.24486221e.2018.2.64952

Bourgeau-Chavez, L., Lee, Y., Battaglia, M., Endres, S., Laubach, Z., & Scarbrough, K. (2016). Identification of woodland vernal pools with seasonal change PALSAR data for habitat conservation. Remote Sensing, 8(6), 490. https://doi.org/10.3390/rs8060490

Brooke, C., & Clutterbuck, B. (2020). Mapping heterogeneous buried archaeological features using multisensor data from Unmanned Aerial Vehicles. Remote Sensing, 12(1), 41. https://doi.org/10.3390/rs12010041

Calleja, J. F., Requejo, O., Díaz-Álvarez, N., Peón, J., Gutiérrez, N., Martín-Hernández, E., Cebada, A., Rubio, D., & Fernández, P. (2018). Detection of buried archeological remains with the combined use of satellite multispectral data and UAV data. International Journal of Applied Earth Observation and Geoinformation, 73(1), 555-573. https://doi.org/10.1016/j.jag.2018.07.023

Campa, M. F., & Coney, P. J. (1983). Tectono-stratigraphic terrranes and mineral resources distributions in Mexico. Canadian Journal of Earth Sciences, 20(6), 1040-1051. https://doi.org/10.1139/e83-094

Cantú Ayala, C. M., Estrada Arellano, J. R., Salinas Rodríguez, M. M., Marmolejo Monsiváis, J. G., & Estrada Castillón, E. A. (2013). Vacíos y omisiones en conservación de ecorregiones de montaña en México. Revista Mexicana de Ciencias Forestales, 4(17), 11-27. https://doi.org/10.29298/rmcf.v4i17.417

Capra, L., & Macías, J. L. (2000). Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. Journal of Volcanology and Geothermal Research, 102(1-2), 149-167. https://doi.org/10.1016/S0377-0273(00)00186-4

Carrasco, P. (1996). Estructura político-territorial del Imperio Tenochca. La Triple Alianza de Tenochtitlan, Tetzcoco y Tlacopan. Ciudad de México: El Colegio de México y Fondo de Cultura Económica.

Castillo, L., Serván, F., & Patroni, K. (2019). Documenting archaeological sites on mountains and slopes with drones. Advances in Archaeological Practice, 7(4), 337-352. https://doi.org/10.1017/aap.2019.35

Chase, A., Chase, D., & Chase, A. (2017). LiDAR for archaeological research and the study of historical landscapes. In N. Masini, & F. Soldoveri (Eds.), Sensing the past. Geotechnologies and the Environment 16, (pp. 89-100). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-50518-3_4

Códice Mendoza. (2014). Retrieved July 7, 2021, from https://codicemendoza.inah.gob.mx

Danese, M., Masini, N., Biscione, M., & Lasaponara, R. (2014). Predictive modelling for preventive archaeology: overview and case study. Central European Journal of Geosciences, 6(1), 42-55. https://doi.org/10.2478/s13533-012-0160-5

De la Peña, V. R., Guevara, M., Favila, H., & Siles, P. D. (2008). Reconocimiento arqueológico del municipio de Ocuilan de Arteaga, Estado de México. Expresión Antropológica, 34, 61-71.

De Laet, V., Paulissen, E., & Waelkens, M. (2007). Methods for the extraction of archeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science, 34(5), 830-84. https://doi.org/10.1016/j.jas.2006.09.013

ESA (2018). Copernicus Open Access Hub. Retrieved July 15, 2018 from https://scihub.copernicus.eu/dhus/#/home

Espa, G., Benedetti, R., De Meo, A., Ricci, U., & Espa, S. (2006). GIS based models and estimation methods for the probability of archaeological site location. Journal of Cultural Heritage, 7(3), 147-155. https://doi.org/10.1016/j.culher.2006.06.001

Fernández Christlieb, F., & García Zambrano, A. J. (2006). Territorialidad y paisaje en el altepetl del siglo XVI. Ciudad de México: Fondo de Cultura Económica e Instituto de Geografía UNAM.

Fernández-Hernández, J., González-Aguilera, D., Rodríguez-González, P., & Mancera-Taboada, J. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low-cost tool for archeological applications. Archaeometry, 57(1), 128-145. https://doi.org/10.1111/arcm.12078

Fernández-Lozano, J., & Gutiérrez-Alonso,G. (2016). Improving archeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports, 5,(1) 509-520, https://doi.org/10.1016/j.jasrep.2016.01.007.

Feuer, B. (2016). Boundaries, borders and frontiers in archeology: a study of spatial relationships. Jefferson, NC: McFarland & Company Inc.

García Castro, R., (1999). Indios, territorio y poder en la provincial Matlatzinca. La negación del espacio politico de los pueblos otomianos, siglos XV-XVII. México: El Colegio de México.

García Castro, R. (2013). Suma de visitas de pueblos de la Nueva España, 1548-1550. Toluca, México: Universidad Autónoma del Estado de México y El Colegio Mexiquense.

García-Palomo, A., Macías, J. L., Arce, J. L., Capra, L., Garduño, V. H., & Espíndola, J. M. (2002). Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Geological Society of America. Map and Chart Series MCH089, 1-26.

Garza, G., & Fernández, F. (2016). Los puertos de montaña de Atlatlahuca: un espacio estratégico en el siglo XVI. Investigaciones Geográficas, Boletín del Instituto de Geografía UNAM, 91(1), 137-151. https://doi.org/10.14350/rig.53179

Giordan, D., Cignetti, M., Baldo, M., & Godone, M. (2017). Relationship between man-made environment and slope stability: the case of 2014 rainfall events in the terraced landscape of the Liguria region (northwestern Italy). Geomatics, Natural Hazards and Risk, 8(2), 1833-1852. https://doi.org/10.1080/19475705.2017.1391129

Goodbody R. H., Coops, C., Marshall, P., Tompalski, P., & Crawford, P.(2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle, 93(1),71-81. https://doi.org/10.5558/tfc2017-012

Golden, C., Murtha, T., Cook, B., Shaffer, D., Schroder, W., Hermitt, E., Alcover O., & Scherer, A. (2016). Reanalyzing environmental Lidar data for archaeology: Mesoamerican applications and implications. Journal of Archaeological Science: Reports, 9(1), 293-308. https://doi.org/10.1016/j.jasrep.2016.07.029

González, R. G. (2010). Tierra y sociedad en la sierra oriental del valle de Toluca, siglos XV-XVIII. Del señorío otomiano a los pueblos coloniales. Toluca: Secretaría de Educación del Gobierno del Estado de México.

González, R. G. (2013). Señoríos, pueblos y comunidades. La organización político territorial en torno del Chicnahuitecatl, siglos XV-XVIII. Toluca: Universidad Autónoma del Estado de México, Facultad de Humanidades.

Gutiérrez, G., Erny, G., Friedman, A., Godsey, M., & Gradoz, M. (2016). Archaeological topography with small Unmanned Aerial Vehicles. The SAA Archaeological Record, 16(2),10-13. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420

Gutiérrez, G. (2017). Aztec provinces of the Southern Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford handbook of the Aztecs (pp. 473-493). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.18

Hassig, R. (1988). Aztec Warfare: Imperial Expansion and Political Control. Norman: University of Oklahoma Press, USA.

Hill, A. C. (2019). Economical drone mapping for archeology: comparison of efficiency and accuracy. Journal of Archaeological Science: Reports, 24(1), 80-91. https://doi.org/10.1016/j.jasrep.2018.12.011

Hinojosa Baliño, I. (2016). Processing a detailed digital terrain model using photogrammetry and UAVS at Cerro de La Máscara, Sinaloa, Mexico. The SAA Archaeological Record, 16(2), 25-29. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420

INAH. (2018). Dirección de Registro Arqueológico. Folio 2ASA00016148. Retrieved January 14, 2020, from http://registropublico.inah.gob.mx

INEGI. (1999). Prontuario de información geográfica Coatepec Harinas., México. Retrieved January 14, 2020, from http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/15/15021.pdf

Isaac, B.L. (1983). Aztec warfare: goals and battlefield comportment. Ethnology, 22(2), 121-131. https://doi.org/10.2307/3773575

Jaramillo, R. (1987). Proyecto Arqueológico del Valle de Malinalco y del Rio Chalma, Estado de México. Ciudad de México: IIA-UNAM.

Jensen, J. L. R., & Mathews, A. J. (2016). Assessment of image-based point cloud products to generate a bare earth Surface and estimate canopy heights in a woodland ecosystem. Remote Sensing, 8(1), 50. https://doi.org/10.3390/rs8010050

Kirk, S. D., Thompson, A. E., & Lippitt, C. D. (2016). Predictive modelling for site detection using remotely sensed phenological data. Advances in archaeological practice, 4(1), 87-101. https://doi.org/10.7183/2326-3768.4.1.87

Lasaponara, R., & Masini, N. (2016). Living in the golden age of digital archaeology. In O. Gervasi, M. Beniamino, M. Sanjay, M. Rocha-Carmelo, T. Torre-David, O. Bernady, E. Apduhan, & W. Stankova (Eds.), Computational science and its applications-ICCSA 2016 Lecture Notes in Computer Science, vol 9787 (pp. 597-610). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42108-7_47

Ledergerber-de-kohli, P. (1984). Planteamientos para promover el desarrollo de la arqueología de rescate en América Latina. Boletín de Antropología Americana, 10(1), 109-117. Retrieved July 07, 2021, from http://www.jstor.org/stable/40977066

León-Portilla, M., (2000). Los Aztecas, disquisiciones sobre un gentilicio. Estudios de Cultura Náhuatl, 31(1), 307-313. México. Retrieved July 07, 2021, from https://nahuatl.historicas.unam.mx/index.php/ecn/article/view/9231

López Wario, L.A. (2016). Arqueología de salvamento y programas constructivos en México. Relaciones Estudios de Historia y Sociedad, 37(148), 101-129. Retrieved July 07, 2021, from http://www.revistarelaciones.com/index.php/relaciones/article/view/REHS148_05/274

Lockhart, J. (1999). Los nahuas después de la conquista. Historia social y cultural de los indios del México central, del siglo XVI al XVII. Ciudad de México: Fondo de Cultura Económica.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Malaperdas, G., & Zacharias, N. (2019). The habitation Model Trend Calculation (MTC): A new effective tool for predictive modelling in archeology. Geo-spatial Information Science, 22(4), 314-331. https://doi.org/10.1080/10095020.2019.1634320

Martinez-Rubi, O., Verhoeven, S., Meersbergen, V., Schütz, M., Oosterom, P., Goncalves, R., & Tijssen, T. (2015). Taming the beast: free and open-source massive point cloud web visualization. In Capturing Reality 2015 (pp. 1-12). Salzburg, Austria.

McAnany, P. A., & Rowe, S. M. (2015). Re-visiting the field: Collaborative archeology as paradigm shift. Journal of Field Archaeology, 40(5), 499-507. https://doi.org/10.1179/2042458215Y.0000000007

Menze, B. H., Ur, J. A., & Sherratt, A.G., (2006). Detection of ancient settlement mounds. Photogrammetric Engineering & Remote Sensing, 72(3), 321–327. https://doi.org/10.14358/PERS.72.3.321

Mink, P., Ripy, J., Bailey, K., & Grossardt, T., (2009). Predictive archaeological modelling using GIS-Based Fuzzy set estimation: a case study in Woodford County, Kentucky, In Proceedings of ESRI Users Conference 2009. Paper 1495. Kentucky: Kentucky Transportation Center Faculty and Researcher Publications. Retrieved July 07, 2021, from https://uknowledge.uky.edu/ktc_facpub/12

Moe, K. T., Owari, T., Furuya, N., & Hiroshima, T., (2020) Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests, 11 (2), 223. https://doi.org/10.3390/f11020223

Murtha, T. M., Broadbent, E. N., Golden, C., Scherer, A., Schroder, W., Wilkinson, B., & Zambrano, A. A. (2019). Drone-mounted Lidar survey of Maya settlement and landscape. Latinamerican Antiquity, 30(3), 630-636. https://doi.org/10.1017/laq.2019.51

Nieto, C. R. (2012). De la Cuenca de México al Valle de Toluca: estudio de la interacción y desplazamientos poblacionales en la época prehispánica. (Doctoral dissertation, Universidad Nacional Autónoma de México). Retrieved from http://132.248.9.195/ptd2012/noviembre/0685954/Index.html

Noviello, M., Cafarelli, B., Calculli, C., Sarris, A., & Mairota, P. (2018). Investigating the distribution of archeological sites: multiparametric vs probability models and potentials for remote sensing data. Applied Geography, 95(1), 34-44. https://doi.org/10.1016/j.apgeog.2018.04.005

O’Driscoll, J. (2018). Landscape applications of photogrammetry using unmanned aerial vehicles. Journal of Archaeological Science: Reports, 22(1), 32-44. https://doi.org/10.1016/j.jasrep.2018.09.010

Palma, L., V. (2014). Relaciones de dominación y poder entre los Matlatzincas de Tenanzinco. Estudios de Cultura Otopame, 9(1), 19-38. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/eco/article/view/51407

Parcak, S. H., (2017). GIS, remote sensing, and landscape archaeology. Retrieved March 22, 2020, from Oxford Handbooks Online https://doi.org/10.1093/oxfordhb/9780199935413.013.11

Patruno, J., Fitrzyk, M., & Delgado, J. M. (2020). Monitoring and detecting archaeological features with multi-frequency polarimetric analysis. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010001

Ramírez, J., & Avitia, J. (2018). Corredor florícola del Estado de México: la percepción de la población del cambio climático. In E. Pérez, & E. Mota (Eds), Desarrollo regional sustentable y turismo (pp. 272-292). Ciudad de México: Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C.

Riley, S., Degloria, S., & Elliot, S. D. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Science, 5(1-4), 23-27.

Roman, A., Tudor-Mihai, U., Fărcaş, S., Opreanu, C. H., & Lăzărescu, V. (2019). Documenting ancient anthropogenic signatures by remotely sensing the current vegetation spectral and 3D patterns: a case study at Roman Porolissum archeological site (Romania). Quaternary International, 523(1), 89-100. https://doi.org/10.1016/j.quaint.2019.07.002

Rouse, L., & Krumnow, J. (2020). On the fly: strategies for UAV-based archeological survey in mountainous areas of Central Asia and their implications for landscape research. Journal of Archaeological Science: Reports, 30(1), 102275. https://doi.org/10.1016/j.jasrep.2020.102275

Ruz Barrio, M. A. (2019). Acercamiento al uso de la tierra en el valle de Matlatzinco a través de los mapas-códice coloniales. Anales de Antropología, 53(2), 83-93. http://dx.doi.org/10.22201/iia.24486221e.2019.2.67095

Salach, A., Bakuła, K., Pilarska, M., Ostrowski, W., Górski, K., & Kurczyński, Z. (2018). Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International. Journal of Geo-Information, 7(9), 342. https://doi.org/10.3390/ijgi7090342

Sanders, W. T., Parsons, J. R., & Santley, R. S. (1979). The Basin of Mexico: ecological process in the evolution of civilization. New York: Academic Press.

SCT. (2019). Norma Oficial Mexicana NOM-107-SCT3-2019, que establece los requerimientos para operar un sistema de aeronave pilotada a distancia (RPAS) en el espacio aéreo mexicano. Secretaria de Comunicaciones y Transportes. Retrieved December 5, 2021, from https://www.sct.gob.mx/fileadmin/DireccionesGrales/DGAC-archivo/modulo2/nom-107-sct3-2019-201119.pdf

Sergheraert, M. (2017). Aztec provinces of the Central Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford Handbook of the Aztecs (pp. 463-473). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.17

SGM. (2013). Carta Geológico-Minera Ixtapan de la Sal E14-A-57 escala 1:50,000. Pachuca: Servicio Geológico Mexicano. Retrieved January 14, 2020, from, https://mapserver.sgm.gob.mx/Cartas_Online/geologia/1614_E14-A57_GM.pdf

Silverstein, J. (2001). Aztec imperialism at Oztuma, Guerrero: Aztec-Chontal relations during the late postclassic and early colonial periods. Ancient Mesoamerica, 12(1), 31-48. https://doi.org/10.1017/S0956536101121115.

Silverstein, J. (2017). This land is my land. Identity and conflict on the Western frontier of the Aztec Empire. In C. D. Beaule (Ed.), Frontiers of Colonialism (pp. 293-324). University Press of Florida

Skentos, A., & Ourania, A. (2017). Landform analysis using terrain attributes. A GIS application on the island of Ikaria (Aegean Sea, Greece). Annals of Valahia, University of Targoviste Geographical Series, 17(1), 90-97.

Smith, M. E., & Berdan, F. F. (1996). Appendix 4: Province descriptions. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith, & E. Umberger (Eds.), Aztec Imperial Strategies (pp. 265-349). Washington DC: Dumbarton Oaks Research Library and Collection.

Smith, M., & Sergheraert, M. (2012). The Aztec Empire. In D.L. Nichols (Ed.), The Oxford Handbook of Mesoamerican Archaeology (pp. 449-458). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195390933.013.0031

Smith, M. E. (2008). Aztec city-state capitals. Gainesville: University Press of Florida.

Sober, E. (2009). Absence of evidence and evidence of absence: evidential transitivity in connection with fossils, fishing, fine-tuning, and firing squads. Philosophical Studies, 143(1), 63-90. https://doi.org/10.1007/s11098-008-9315-0

Soroush, M., Mehrtash, A., Khazraee, E., & Ur, J. A. (2020). Deep learning in archaeological remote sensing: automated Qanat detection in the Kurdistan Region of Iraq. Remote Sensing, 12(3), 500. https://doi.org/10.3390/rs12030500

Stone, C., Webster, M., Osborn, J., & Iqbal, I. (2016). Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry. Australian Forestry, 79(4), 271-282. https://doi.org/10.1080/00049158.2016.1241134

Stott, D., Boyd, D. S., Beck, A., & Cohn, A. (2015). Airborne LiDAR for the detection of archaeological vegetation marks using biomass as a proxy. Remote Sensing, 7(2), 1594-1618. https://doi.org/10.3390/rs70201594

Štular, B., Nuninger, L., & Oštir, K., (2012). Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science, 39, 3354-3360. https://doi.org/10.1016/j.jas.2012.05.029

Sugiura, Y., & Nieto, R. (2014). Una reflexión sobre la preservación del patrimonio arqueológico: el caso de los sitios de escala menor en el Estado de México. Anales de Antropología, 48(2), 75-95. http://doi.org/10.1016/S0185-1225(14)70244-9

Tomaszewski, B. M., & Smith, M. E. (2011). Polities, territory and historical change in Postclassic Matlatzinco (Toluca Valley, central Mexico). Journal of Historical Geography, 37(1), 22-39. https://doi.org/10.1016/j.jhg.2010.06.001

Van Valkenburgh, P., Cushman, K. C., Castillo Butters, L. J., Rojas Vega, C., Roberts, C., Kepler, C., & Kellner, J. (2020). Lasers without lost cities: using drone Lidar to capture architectural complexity at Kuelap, Amazonas, Peru. Journal of Field Archaeology, 45(1), 75-88. https://doi.org/10.1080/00934690.2020.1713287

Vaughn, S., & Crawford, T. (2009). A predictive model of archeological potential: an example from northwestern Belize. Applied Geography, 29(4), 542-555. https://doi.org/10.1016/j.apgeog.2009.01.001

Vázquez, M., M. (2008). La formación de los pueblos de indios en el real de minas de Zacualpan, siglos XV-XII. (Undergraduate thesis). Universidad Autónoma del Estado de México, Mexico.

Wallach, E. (2019). Inference from absence: the case of archeology. Palgrave Communications, 5(94), 1-10. https://doi.org/10.1057/s41599-019-0307-9

Wasowski, J. (1998). Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environmental Geology, 35, 197–209. https://doi.org/10.1007/s002540050306

Wiratama, W., & Sim, D. (2019). Fusion network for change detection of high-resolution panchromatic imagery. Applied Sciences, 9(7), 1441. https://doi.org/10.3390/app9071441

Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C., & Codding, B. F. (2020). Advancing predictive modeling in archeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS ONE, 15(10), e0239424. https://doi.org/10.1371/journal.pone.0239424

Zhang, J., Hu, X., Dai, H., & Qu, S. (2020). DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sensing, 12(1), 178. https://doi.org/10.3390/rs12010178

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record