Mostrar el registro sencillo del ítem
dc.contributor.author | Miranda-Gómez, Raúl | es_ES |
dc.contributor.author | Cabadas-Báez, Héctor V. | es_ES |
dc.contributor.author | Antonio-Némiga, Xanat | es_ES |
dc.contributor.author | Dávila-Hernández, Norma | es_ES |
dc.coverage.spatial | east=-102.552784; north=23.634501; name=Mèxic | es_ES |
dc.date.accessioned | 2022-09-06T08:08:56Z | |
dc.date.available | 2022-09-06T08:08:56Z | |
dc.date.issued | 2022-07-27 | |
dc.identifier.uri | http://hdl.handle.net/10251/185323 | |
dc.description.abstract | [EN] Mexico s vast archaeological research tradition has increased with the use of remote sensing technologies; however, this recent approach is still costly in emerging market economies. In addition, the scales of prospection, landscape, and violence affect the type of research that heritage-culture ministries and universities can conduct. In Central Mexico, researchers have studied the pre-Hispanic Settlement Pattern during the Mesoamerican Postclassic (900-1521 AD) within the scope of the Aztec Empire and its conquests. There are settlements indications before and during the rule of the central empire, but the evidence is difficult to identify, particularly in the southwest of the capital, in the transition between the Lerma and Balsas River basins and their political-geographical complexities. This research focuses on a Geographic Information System (GIS)-based processing of multiple source data, the potential prospection of archaeological sites based on spatial data integration from Sentinel-2 optical sensors, Unmanned Aerial Vehicle (UAV), Digital Terrain Model (DTM), Normalized Difference Vegetation Index (NDVI) and field validation. What is revealed is the relationship between terrain morphologies and anthropic modifications. A binary map expresses possible archaeological remnants as a percentage; NDVI pixels and the morphometry values were associated with anthropic features (meso-reliefs with a tendency to regular geometries: slope, orientation, and roughness index); they were then interpreted as probable archaeological evidence. Within archaeological fieldwork, with limited resources (time, funding and staff), this approach proposes a robust method that can be replicated in other mountainous landscapes that are densely covered by vegetation. | es_ES |
dc.description.abstract | [ES] México tiene una vasta tradición de investigación arqueológica que, en las últimas décadas, se ha incrementado con el uso de tecnologías de percepción remota; sin embargo, este enfoque sigue siendo costoso en el contexto de las economías emergentes. Además, las escalas de prospección, paisaje e inseguridad influyen en el tipo de investigación que realizan los ministerios de patrimonio cultural y las universidades. En el Centro de México, el Patrón de Asentamiento Prehispánico durante el Posclásico Mesoamericano (900-1521 d.C.), ha sido estudiado dentro del alcance del Imperio Azteca y sus conquistas. Hay indicios de asentamientos antes y durante el dominio del Imperio central, pero la evidencia es difícil de identificar; particularmente en el suroeste de la capital, en la transición entre las cuencas de los ríos Lerma y Balsas y sus complejidades político-geográficas. Esta investigación se centra en el procesamiento basado en GIS de datos de múltiples fuentes, la prospección de sitios arqueológicos apoyada en la integración de datos espaciales de los sensores ópticos Sentinel-2, el vehículo aéreo no tripulado (UAV), el modelo digital del terreno (MDT), el índice de vegetación de diferencia normalizada (NDVI) y la validación de campo, que revelan la relación entre las morfologías del terreno y las modificaciones antrópicas. Un mapa binario expresa los posibles remanentes arqueológicos como un porcentaje; los píxeles del NDVI y los valores de morfometría se asociaron a características antrópicas (mesorrelieves con tendencia a geometrías regulares: pendiente, orientación e índice de rugosidad), y se interpretaron como probable evidencia arqueológica. Dentro del trabajo de campo arqueológico, con recursos limitados (tiempo, finanzas y auxiliares), este enfoque sugiere un método robusto que puede ser replicado en otros paisajes montañosos que están densamente cubiertos por vegetación. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Virtual Archaeology Review | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mesoamerican Postclassic | es_ES |
dc.subject | Aztec Empire | es_ES |
dc.subject | Sentinel-2 optical sensors | es_ES |
dc.subject | Digital Aerial Photogrammetry (DAP) | es_ES |
dc.subject | Normalized Difference Vegetation Index (NDVI) | es_ES |
dc.subject | Unmanned Aerial Vehicles (UAVs) | es_ES |
dc.subject | Posclásico mesoamericano | es_ES |
dc.subject | Imperio azteca | es_ES |
dc.subject | Sensores ópticos Sentinel-2 | es_ES |
dc.subject | Vehículo aéreo no tripulado (VANT) | es_ES |
dc.subject | Fotogrametría digital aérea (DAP) | es_ES |
dc.subject | Índice de vegetación de diferencia normalizada (NDVI) | es_ES |
dc.title | Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits | es_ES |
dc.title.alternative | Integración geoespacial para mapear asentamientos prehispánicos en los límites del imperio azteca | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/var.2022.16106 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Miranda-Gómez, R.; Cabadas-Báez, HV.; Antonio-Némiga, X.; Dávila-Hernández, N. (2022). Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits. Virtual Archaeology Review. 13(27):49-65. https://doi.org/10.4995/var.2022.16106 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/var.2022.16106 | es_ES |
dc.description.upvformatpinicio | 49 | es_ES |
dc.description.upvformatpfin | 65 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 27 | es_ES |
dc.identifier.eissn | 1989-9947 | |
dc.relation.pasarela | OJS\16106 | es_ES |
dc.description.references | Abate, N., Elfadaly, A., Masini, N., & Lasaponara, R. (2020). Multitemporal 2016-2018 Sentinel-2 data enhancement for landscape archaeology: the case study of the Foggia Province, Southern Italy. Remote Sensing, 12(8), 1309. https://doi.org/10.3390/rs12081309 | es_ES |
dc.description.references | Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones, 4(3), 46. https://doi.org/10.3390/drones4030046 | es_ES |
dc.description.references | Agapiou, A., Alexakis, D. D., Sarris, A., & Hadjimitsis, D. G. (2014). Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176 | es_ES |
dc.description.references | Albores, Z. B. (2006). Una travesía conceptual del Matlatzinco al Valle de Toluca. Anales de Antropología, 40(1), 253-282. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/antropologia/article/view/9961/pdf_123 | es_ES |
dc.description.references | Arana, R. (1990). Proyecto Coatlán. Área Tonatico-Pilcaya. Colección científica. Serie Arqueología. Ciudad de México: Instituto Nacional de Antropología e Historia. | es_ES |
dc.description.references | Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Science, 7(6), 637-650. https://doi.org/10.5194/nhess-7-637-2007 | es_ES |
dc.description.references | Banning, E. B., Hawkins, A. L., & Stewart, S. T. (2006). Detection functions for archaeological survey. American Antiquity, 71(4), 723-742. https://doi.org/10.2307/40035886 | es_ES |
dc.description.references | Barlow, R. H. (1992). La frontera tarasca, in J. Monjaras-Ruiz, E. Limón, & M. de la C.Paillés (Eds), Obras de Robert Barlow,Volumen. 4, La extensión del imperio de los culhua mexica (pp. 34-45). Puebla: INAH y Universidad de las Américas. | es_ES |
dc.description.references | Bennett, R., Welham, K., Hill, R., & Ford, A. (2012). The application of vegetation indices for the prospection of archaeological features in grass-dominated environments. Archaeological Prospection, 19(3), 209-218. https://doi.org/10.1002/arp.1429 | es_ES |
dc.description.references | Berdan, F. (1996). The tributary provinces. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith & E. Umberger (Eds.), Aztec Imperial Strategies (pp- 115-135). Washington DC: Dumbarton Oaks. | es_ES |
dc.description.references | Berdan, F. (2017). Late Postclassic Mesoamerican trade networks and imperial expansion. Journal of Globalization Studies, 8(1), 14-29. Retrieved July 07, 2021, from https://www.sociostudies.org/journal/articles/939197/ | es_ES |
dc.description.references | Borejsza, A. (2018). Las nueve reencarnaciones de Matlatzinco. Comentarios acerca de la estructura del altepetl y un intento más de acomodar el rompecabezas terminológico matlatzinca. Anales de Antropología, 52(2), 71-93. https://doi.org/10.22201/iia.24486221e.2018.2.64952 | es_ES |
dc.description.references | Bourgeau-Chavez, L., Lee, Y., Battaglia, M., Endres, S., Laubach, Z., & Scarbrough, K. (2016). Identification of woodland vernal pools with seasonal change PALSAR data for habitat conservation. Remote Sensing, 8(6), 490. https://doi.org/10.3390/rs8060490 | es_ES |
dc.description.references | Brooke, C., & Clutterbuck, B. (2020). Mapping heterogeneous buried archaeological features using multisensor data from Unmanned Aerial Vehicles. Remote Sensing, 12(1), 41. https://doi.org/10.3390/rs12010041 | es_ES |
dc.description.references | Calleja, J. F., Requejo, O., Díaz-Álvarez, N., Peón, J., Gutiérrez, N., Martín-Hernández, E., Cebada, A., Rubio, D., & Fernández, P. (2018). Detection of buried archeological remains with the combined use of satellite multispectral data and UAV data. International Journal of Applied Earth Observation and Geoinformation, 73(1), 555-573. https://doi.org/10.1016/j.jag.2018.07.023 | es_ES |
dc.description.references | Campa, M. F., & Coney, P. J. (1983). Tectono-stratigraphic terrranes and mineral resources distributions in Mexico. Canadian Journal of Earth Sciences, 20(6), 1040-1051. https://doi.org/10.1139/e83-094 | es_ES |
dc.description.references | Cantú Ayala, C. M., Estrada Arellano, J. R., Salinas Rodríguez, M. M., Marmolejo Monsiváis, J. G., & Estrada Castillón, E. A. (2013). Vacíos y omisiones en conservación de ecorregiones de montaña en México. Revista Mexicana de Ciencias Forestales, 4(17), 11-27. https://doi.org/10.29298/rmcf.v4i17.417 | es_ES |
dc.description.references | Capra, L., & Macías, J. L. (2000). Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. Journal of Volcanology and Geothermal Research, 102(1-2), 149-167. https://doi.org/10.1016/S0377-0273(00)00186-4 | es_ES |
dc.description.references | Carrasco, P. (1996). Estructura político-territorial del Imperio Tenochca. La Triple Alianza de Tenochtitlan, Tetzcoco y Tlacopan. Ciudad de México: El Colegio de México y Fondo de Cultura Económica. | es_ES |
dc.description.references | Castillo, L., Serván, F., & Patroni, K. (2019). Documenting archaeological sites on mountains and slopes with drones. Advances in Archaeological Practice, 7(4), 337-352. https://doi.org/10.1017/aap.2019.35 | es_ES |
dc.description.references | Chase, A., Chase, D., & Chase, A. (2017). LiDAR for archaeological research and the study of historical landscapes. In N. Masini, & F. Soldoveri (Eds.), Sensing the past. Geotechnologies and the Environment 16, (pp. 89-100). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-50518-3_4 | es_ES |
dc.description.references | Códice Mendoza. (2014). Retrieved July 7, 2021, from https://codicemendoza.inah.gob.mx | es_ES |
dc.description.references | Danese, M., Masini, N., Biscione, M., & Lasaponara, R. (2014). Predictive modelling for preventive archaeology: overview and case study. Central European Journal of Geosciences, 6(1), 42-55. https://doi.org/10.2478/s13533-012-0160-5 | es_ES |
dc.description.references | De la Peña, V. R., Guevara, M., Favila, H., & Siles, P. D. (2008). Reconocimiento arqueológico del municipio de Ocuilan de Arteaga, Estado de México. Expresión Antropológica, 34, 61-71. | es_ES |
dc.description.references | De Laet, V., Paulissen, E., & Waelkens, M. (2007). Methods for the extraction of archeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science, 34(5), 830-84. https://doi.org/10.1016/j.jas.2006.09.013 | es_ES |
dc.description.references | ESA (2018). Copernicus Open Access Hub. Retrieved July 15, 2018 from https://scihub.copernicus.eu/dhus/#/home | es_ES |
dc.description.references | Espa, G., Benedetti, R., De Meo, A., Ricci, U., & Espa, S. (2006). GIS based models and estimation methods for the probability of archaeological site location. Journal of Cultural Heritage, 7(3), 147-155. https://doi.org/10.1016/j.culher.2006.06.001 | es_ES |
dc.description.references | Fernández Christlieb, F., & García Zambrano, A. J. (2006). Territorialidad y paisaje en el altepetl del siglo XVI. Ciudad de México: Fondo de Cultura Económica e Instituto de Geografía UNAM. | es_ES |
dc.description.references | Fernández-Hernández, J., González-Aguilera, D., Rodríguez-González, P., & Mancera-Taboada, J. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low-cost tool for archeological applications. Archaeometry, 57(1), 128-145. https://doi.org/10.1111/arcm.12078 | es_ES |
dc.description.references | Fernández-Lozano, J., & Gutiérrez-Alonso,G. (2016). Improving archeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports, 5,(1) 509-520, https://doi.org/10.1016/j.jasrep.2016.01.007. | es_ES |
dc.description.references | Feuer, B. (2016). Boundaries, borders and frontiers in archeology: a study of spatial relationships. Jefferson, NC: McFarland & Company Inc. | es_ES |
dc.description.references | García Castro, R., (1999). Indios, territorio y poder en la provincial Matlatzinca. La negación del espacio politico de los pueblos otomianos, siglos XV-XVII. México: El Colegio de México. | es_ES |
dc.description.references | García Castro, R. (2013). Suma de visitas de pueblos de la Nueva España, 1548-1550. Toluca, México: Universidad Autónoma del Estado de México y El Colegio Mexiquense. | es_ES |
dc.description.references | García-Palomo, A., Macías, J. L., Arce, J. L., Capra, L., Garduño, V. H., & Espíndola, J. M. (2002). Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Geological Society of America. Map and Chart Series MCH089, 1-26. | es_ES |
dc.description.references | Garza, G., & Fernández, F. (2016). Los puertos de montaña de Atlatlahuca: un espacio estratégico en el siglo XVI. Investigaciones Geográficas, Boletín del Instituto de Geografía UNAM, 91(1), 137-151. https://doi.org/10.14350/rig.53179 | es_ES |
dc.description.references | Giordan, D., Cignetti, M., Baldo, M., & Godone, M. (2017). Relationship between man-made environment and slope stability: the case of 2014 rainfall events in the terraced landscape of the Liguria region (northwestern Italy). Geomatics, Natural Hazards and Risk, 8(2), 1833-1852. https://doi.org/10.1080/19475705.2017.1391129 | es_ES |
dc.description.references | Goodbody R. H., Coops, C., Marshall, P., Tompalski, P., & Crawford, P.(2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle, 93(1),71-81. https://doi.org/10.5558/tfc2017-012 | es_ES |
dc.description.references | Golden, C., Murtha, T., Cook, B., Shaffer, D., Schroder, W., Hermitt, E., Alcover O., & Scherer, A. (2016). Reanalyzing environmental Lidar data for archaeology: Mesoamerican applications and implications. Journal of Archaeological Science: Reports, 9(1), 293-308. https://doi.org/10.1016/j.jasrep.2016.07.029 | es_ES |
dc.description.references | González, R. G. (2010). Tierra y sociedad en la sierra oriental del valle de Toluca, siglos XV-XVIII. Del señorío otomiano a los pueblos coloniales. Toluca: Secretaría de Educación del Gobierno del Estado de México. | es_ES |
dc.description.references | González, R. G. (2013). Señoríos, pueblos y comunidades. La organización político territorial en torno del Chicnahuitecatl, siglos XV-XVIII. Toluca: Universidad Autónoma del Estado de México, Facultad de Humanidades. | es_ES |
dc.description.references | Gutiérrez, G., Erny, G., Friedman, A., Godsey, M., & Gradoz, M. (2016). Archaeological topography with small Unmanned Aerial Vehicles. The SAA Archaeological Record, 16(2),10-13. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420 | es_ES |
dc.description.references | Gutiérrez, G. (2017). Aztec provinces of the Southern Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford handbook of the Aztecs (pp. 473-493). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.18 | es_ES |
dc.description.references | Hassig, R. (1988). Aztec Warfare: Imperial Expansion and Political Control. Norman: University of Oklahoma Press, USA. | es_ES |
dc.description.references | Hill, A. C. (2019). Economical drone mapping for archeology: comparison of efficiency and accuracy. Journal of Archaeological Science: Reports, 24(1), 80-91. https://doi.org/10.1016/j.jasrep.2018.12.011 | es_ES |
dc.description.references | Hinojosa Baliño, I. (2016). Processing a detailed digital terrain model using photogrammetry and UAVS at Cerro de La Máscara, Sinaloa, Mexico. The SAA Archaeological Record, 16(2), 25-29. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420 | es_ES |
dc.description.references | INAH. (2018). Dirección de Registro Arqueológico. Folio 2ASA00016148. Retrieved January 14, 2020, from http://registropublico.inah.gob.mx | es_ES |
dc.description.references | INEGI. (1999). Prontuario de información geográfica Coatepec Harinas., México. Retrieved January 14, 2020, from http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/15/15021.pdf | es_ES |
dc.description.references | Isaac, B.L. (1983). Aztec warfare: goals and battlefield comportment. Ethnology, 22(2), 121-131. https://doi.org/10.2307/3773575 | es_ES |
dc.description.references | Jaramillo, R. (1987). Proyecto Arqueológico del Valle de Malinalco y del Rio Chalma, Estado de México. Ciudad de México: IIA-UNAM. | es_ES |
dc.description.references | Jensen, J. L. R., & Mathews, A. J. (2016). Assessment of image-based point cloud products to generate a bare earth Surface and estimate canopy heights in a woodland ecosystem. Remote Sensing, 8(1), 50. https://doi.org/10.3390/rs8010050 | es_ES |
dc.description.references | Kirk, S. D., Thompson, A. E., & Lippitt, C. D. (2016). Predictive modelling for site detection using remotely sensed phenological data. Advances in archaeological practice, 4(1), 87-101. https://doi.org/10.7183/2326-3768.4.1.87 | es_ES |
dc.description.references | Lasaponara, R., & Masini, N. (2016). Living in the golden age of digital archaeology. In O. Gervasi, M. Beniamino, M. Sanjay, M. Rocha-Carmelo, T. Torre-David, O. Bernady, E. Apduhan, & W. Stankova (Eds.), Computational science and its applications-ICCSA 2016 Lecture Notes in Computer Science, vol 9787 (pp. 597-610). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42108-7_47 | es_ES |
dc.description.references | Ledergerber-de-kohli, P. (1984). Planteamientos para promover el desarrollo de la arqueología de rescate en América Latina. Boletín de Antropología Americana, 10(1), 109-117. Retrieved July 07, 2021, from http://www.jstor.org/stable/40977066 | es_ES |
dc.description.references | León-Portilla, M., (2000). Los Aztecas, disquisiciones sobre un gentilicio. Estudios de Cultura Náhuatl, 31(1), 307-313. México. Retrieved July 07, 2021, from https://nahuatl.historicas.unam.mx/index.php/ecn/article/view/9231 | es_ES |
dc.description.references | López Wario, L.A. (2016). Arqueología de salvamento y programas constructivos en México. Relaciones Estudios de Historia y Sociedad, 37(148), 101-129. Retrieved July 07, 2021, from http://www.revistarelaciones.com/index.php/relaciones/article/view/REHS148_05/274 | es_ES |
dc.description.references | Lockhart, J. (1999). Los nahuas después de la conquista. Historia social y cultural de los indios del México central, del siglo XVI al XVII. Ciudad de México: Fondo de Cultura Económica. | es_ES |
dc.description.references | Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 | es_ES |
dc.description.references | Malaperdas, G., & Zacharias, N. (2019). The habitation Model Trend Calculation (MTC): A new effective tool for predictive modelling in archeology. Geo-spatial Information Science, 22(4), 314-331. https://doi.org/10.1080/10095020.2019.1634320 | es_ES |
dc.description.references | Martinez-Rubi, O., Verhoeven, S., Meersbergen, V., Schütz, M., Oosterom, P., Goncalves, R., & Tijssen, T. (2015). Taming the beast: free and open-source massive point cloud web visualization. In Capturing Reality 2015 (pp. 1-12). Salzburg, Austria. | es_ES |
dc.description.references | McAnany, P. A., & Rowe, S. M. (2015). Re-visiting the field: Collaborative archeology as paradigm shift. Journal of Field Archaeology, 40(5), 499-507. https://doi.org/10.1179/2042458215Y.0000000007 | es_ES |
dc.description.references | Menze, B. H., Ur, J. A., & Sherratt, A.G., (2006). Detection of ancient settlement mounds. Photogrammetric Engineering & Remote Sensing, 72(3), 321–327. https://doi.org/10.14358/PERS.72.3.321 | es_ES |
dc.description.references | Mink, P., Ripy, J., Bailey, K., & Grossardt, T., (2009). Predictive archaeological modelling using GIS-Based Fuzzy set estimation: a case study in Woodford County, Kentucky, In Proceedings of ESRI Users Conference 2009. Paper 1495. Kentucky: Kentucky Transportation Center Faculty and Researcher Publications. Retrieved July 07, 2021, from https://uknowledge.uky.edu/ktc_facpub/12 | es_ES |
dc.description.references | Moe, K. T., Owari, T., Furuya, N., & Hiroshima, T., (2020) Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests, 11 (2), 223. https://doi.org/10.3390/f11020223 | es_ES |
dc.description.references | Murtha, T. M., Broadbent, E. N., Golden, C., Scherer, A., Schroder, W., Wilkinson, B., & Zambrano, A. A. (2019). Drone-mounted Lidar survey of Maya settlement and landscape. Latinamerican Antiquity, 30(3), 630-636. https://doi.org/10.1017/laq.2019.51 | es_ES |
dc.description.references | Nieto, C. R. (2012). De la Cuenca de México al Valle de Toluca: estudio de la interacción y desplazamientos poblacionales en la época prehispánica. (Doctoral dissertation, Universidad Nacional Autónoma de México). Retrieved from http://132.248.9.195/ptd2012/noviembre/0685954/Index.html | es_ES |
dc.description.references | Noviello, M., Cafarelli, B., Calculli, C., Sarris, A., & Mairota, P. (2018). Investigating the distribution of archeological sites: multiparametric vs probability models and potentials for remote sensing data. Applied Geography, 95(1), 34-44. https://doi.org/10.1016/j.apgeog.2018.04.005 | es_ES |
dc.description.references | O’Driscoll, J. (2018). Landscape applications of photogrammetry using unmanned aerial vehicles. Journal of Archaeological Science: Reports, 22(1), 32-44. https://doi.org/10.1016/j.jasrep.2018.09.010 | es_ES |
dc.description.references | Palma, L., V. (2014). Relaciones de dominación y poder entre los Matlatzincas de Tenanzinco. Estudios de Cultura Otopame, 9(1), 19-38. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/eco/article/view/51407 | es_ES |
dc.description.references | Parcak, S. H., (2017). GIS, remote sensing, and landscape archaeology. Retrieved March 22, 2020, from Oxford Handbooks Online https://doi.org/10.1093/oxfordhb/9780199935413.013.11 | es_ES |
dc.description.references | Patruno, J., Fitrzyk, M., & Delgado, J. M. (2020). Monitoring and detecting archaeological features with multi-frequency polarimetric analysis. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010001 | es_ES |
dc.description.references | Ramírez, J., & Avitia, J. (2018). Corredor florícola del Estado de México: la percepción de la población del cambio climático. In E. Pérez, & E. Mota (Eds), Desarrollo regional sustentable y turismo (pp. 272-292). Ciudad de México: Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C. | es_ES |
dc.description.references | Riley, S., Degloria, S., & Elliot, S. D. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Science, 5(1-4), 23-27. | es_ES |
dc.description.references | Roman, A., Tudor-Mihai, U., Fărcaş, S., Opreanu, C. H., & Lăzărescu, V. (2019). Documenting ancient anthropogenic signatures by remotely sensing the current vegetation spectral and 3D patterns: a case study at Roman Porolissum archeological site (Romania). Quaternary International, 523(1), 89-100. https://doi.org/10.1016/j.quaint.2019.07.002 | es_ES |
dc.description.references | Rouse, L., & Krumnow, J. (2020). On the fly: strategies for UAV-based archeological survey in mountainous areas of Central Asia and their implications for landscape research. Journal of Archaeological Science: Reports, 30(1), 102275. https://doi.org/10.1016/j.jasrep.2020.102275 | es_ES |
dc.description.references | Ruz Barrio, M. A. (2019). Acercamiento al uso de la tierra en el valle de Matlatzinco a través de los mapas-códice coloniales. Anales de Antropología, 53(2), 83-93. http://dx.doi.org/10.22201/iia.24486221e.2019.2.67095 | es_ES |
dc.description.references | Salach, A., Bakuła, K., Pilarska, M., Ostrowski, W., Górski, K., & Kurczyński, Z. (2018). Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International. Journal of Geo-Information, 7(9), 342. https://doi.org/10.3390/ijgi7090342 | es_ES |
dc.description.references | Sanders, W. T., Parsons, J. R., & Santley, R. S. (1979). The Basin of Mexico: ecological process in the evolution of civilization. New York: Academic Press. | es_ES |
dc.description.references | SCT. (2019). Norma Oficial Mexicana NOM-107-SCT3-2019, que establece los requerimientos para operar un sistema de aeronave pilotada a distancia (RPAS) en el espacio aéreo mexicano. Secretaria de Comunicaciones y Transportes. Retrieved December 5, 2021, from https://www.sct.gob.mx/fileadmin/DireccionesGrales/DGAC-archivo/modulo2/nom-107-sct3-2019-201119.pdf | es_ES |
dc.description.references | Sergheraert, M. (2017). Aztec provinces of the Central Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford Handbook of the Aztecs (pp. 463-473). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.17 | es_ES |
dc.description.references | SGM. (2013). Carta Geológico-Minera Ixtapan de la Sal E14-A-57 escala 1:50,000. Pachuca: Servicio Geológico Mexicano. Retrieved January 14, 2020, from, https://mapserver.sgm.gob.mx/Cartas_Online/geologia/1614_E14-A57_GM.pdf | es_ES |
dc.description.references | Silverstein, J. (2001). Aztec imperialism at Oztuma, Guerrero: Aztec-Chontal relations during the late postclassic and early colonial periods. Ancient Mesoamerica, 12(1), 31-48. https://doi.org/10.1017/S0956536101121115. | es_ES |
dc.description.references | Silverstein, J. (2017). This land is my land. Identity and conflict on the Western frontier of the Aztec Empire. In C. D. Beaule (Ed.), Frontiers of Colonialism (pp. 293-324). University Press of Florida | es_ES |
dc.description.references | Skentos, A., & Ourania, A. (2017). Landform analysis using terrain attributes. A GIS application on the island of Ikaria (Aegean Sea, Greece). Annals of Valahia, University of Targoviste Geographical Series, 17(1), 90-97. | es_ES |
dc.description.references | Smith, M. E., & Berdan, F. F. (1996). Appendix 4: Province descriptions. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith, & E. Umberger (Eds.), Aztec Imperial Strategies (pp. 265-349). Washington DC: Dumbarton Oaks Research Library and Collection. | es_ES |
dc.description.references | Smith, M., & Sergheraert, M. (2012). The Aztec Empire. In D.L. Nichols (Ed.), The Oxford Handbook of Mesoamerican Archaeology (pp. 449-458). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195390933.013.0031 | es_ES |
dc.description.references | Smith, M. E. (2008). Aztec city-state capitals. Gainesville: University Press of Florida. | es_ES |
dc.description.references | Sober, E. (2009). Absence of evidence and evidence of absence: evidential transitivity in connection with fossils, fishing, fine-tuning, and firing squads. Philosophical Studies, 143(1), 63-90. https://doi.org/10.1007/s11098-008-9315-0 | es_ES |
dc.description.references | Soroush, M., Mehrtash, A., Khazraee, E., & Ur, J. A. (2020). Deep learning in archaeological remote sensing: automated Qanat detection in the Kurdistan Region of Iraq. Remote Sensing, 12(3), 500. https://doi.org/10.3390/rs12030500 | es_ES |
dc.description.references | Stone, C., Webster, M., Osborn, J., & Iqbal, I. (2016). Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry. Australian Forestry, 79(4), 271-282. https://doi.org/10.1080/00049158.2016.1241134 | es_ES |
dc.description.references | Stott, D., Boyd, D. S., Beck, A., & Cohn, A. (2015). Airborne LiDAR for the detection of archaeological vegetation marks using biomass as a proxy. Remote Sensing, 7(2), 1594-1618. https://doi.org/10.3390/rs70201594 | es_ES |
dc.description.references | Štular, B., Nuninger, L., & Oštir, K., (2012). Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science, 39, 3354-3360. https://doi.org/10.1016/j.jas.2012.05.029 | es_ES |
dc.description.references | Sugiura, Y., & Nieto, R. (2014). Una reflexión sobre la preservación del patrimonio arqueológico: el caso de los sitios de escala menor en el Estado de México. Anales de Antropología, 48(2), 75-95. http://doi.org/10.1016/S0185-1225(14)70244-9 | es_ES |
dc.description.references | Tomaszewski, B. M., & Smith, M. E. (2011). Polities, territory and historical change in Postclassic Matlatzinco (Toluca Valley, central Mexico). Journal of Historical Geography, 37(1), 22-39. https://doi.org/10.1016/j.jhg.2010.06.001 | es_ES |
dc.description.references | Van Valkenburgh, P., Cushman, K. C., Castillo Butters, L. J., Rojas Vega, C., Roberts, C., Kepler, C., & Kellner, J. (2020). Lasers without lost cities: using drone Lidar to capture architectural complexity at Kuelap, Amazonas, Peru. Journal of Field Archaeology, 45(1), 75-88. https://doi.org/10.1080/00934690.2020.1713287 | es_ES |
dc.description.references | Vaughn, S., & Crawford, T. (2009). A predictive model of archeological potential: an example from northwestern Belize. Applied Geography, 29(4), 542-555. https://doi.org/10.1016/j.apgeog.2009.01.001 | es_ES |
dc.description.references | Vázquez, M., M. (2008). La formación de los pueblos de indios en el real de minas de Zacualpan, siglos XV-XII. (Undergraduate thesis). Universidad Autónoma del Estado de México, Mexico. | es_ES |
dc.description.references | Wallach, E. (2019). Inference from absence: the case of archeology. Palgrave Communications, 5(94), 1-10. https://doi.org/10.1057/s41599-019-0307-9 | es_ES |
dc.description.references | Wasowski, J. (1998). Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environmental Geology, 35, 197–209. https://doi.org/10.1007/s002540050306 | es_ES |
dc.description.references | Wiratama, W., & Sim, D. (2019). Fusion network for change detection of high-resolution panchromatic imagery. Applied Sciences, 9(7), 1441. https://doi.org/10.3390/app9071441 | es_ES |
dc.description.references | Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C., & Codding, B. F. (2020). Advancing predictive modeling in archeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS ONE, 15(10), e0239424. https://doi.org/10.1371/journal.pone.0239424 | es_ES |
dc.description.references | Zhang, J., Hu, X., Dai, H., & Qu, S. (2020). DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sensing, 12(1), 178. https://doi.org/10.3390/rs12010178 | es_ES |