- -

Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Miranda-Gómez, Raúl es_ES
dc.contributor.author Cabadas-Báez, Héctor V. es_ES
dc.contributor.author Antonio-Némiga, Xanat es_ES
dc.contributor.author Dávila-Hernández, Norma es_ES
dc.coverage.spatial east=-102.552784; north=23.634501; name=Mèxic es_ES
dc.date.accessioned 2022-09-06T08:08:56Z
dc.date.available 2022-09-06T08:08:56Z
dc.date.issued 2022-07-27
dc.identifier.uri http://hdl.handle.net/10251/185323
dc.description.abstract [EN] Mexico s vast archaeological research tradition has increased with the use of remote sensing technologies; however, this recent approach is still costly in emerging market economies. In addition, the scales of prospection, landscape, and violence affect the type of research that heritage-culture ministries and universities can conduct. In Central Mexico, researchers have studied the pre-Hispanic Settlement Pattern during the Mesoamerican Postclassic (900-1521 AD) within the scope of the Aztec Empire and its conquests. There are settlements indications before and during the rule of the central empire, but the evidence is difficult to identify, particularly in the southwest of the capital, in the transition between the Lerma and Balsas River basins and their political-geographical complexities. This research focuses on a Geographic Information System (GIS)-based processing of multiple source data, the potential prospection of archaeological sites based on spatial data integration from Sentinel-2 optical sensors, Unmanned Aerial Vehicle (UAV), Digital Terrain Model (DTM), Normalized Difference Vegetation Index (NDVI) and field validation. What is revealed is the relationship between terrain morphologies and anthropic modifications. A binary map expresses possible archaeological remnants as a percentage; NDVI pixels and the morphometry values were associated with anthropic features (meso-reliefs with a tendency to regular geometries: slope, orientation, and roughness index); they were then interpreted as probable archaeological evidence. Within archaeological fieldwork, with limited resources (time, funding and staff), this approach proposes a robust method that can be replicated in other mountainous landscapes that are densely covered by vegetation. es_ES
dc.description.abstract [ES] México tiene una vasta tradición de investigación arqueológica que, en las últimas décadas, se ha incrementado con el uso de tecnologías de percepción remota; sin embargo, este enfoque sigue siendo costoso en el contexto de las economías emergentes. Además, las escalas de prospección, paisaje e inseguridad influyen en el tipo de investigación que realizan los ministerios de patrimonio cultural y las universidades. En el Centro de México, el Patrón de Asentamiento Prehispánico durante el Posclásico Mesoamericano (900-1521 d.C.), ha sido estudiado dentro del alcance del Imperio Azteca y sus conquistas. Hay indicios de asentamientos antes y durante el dominio del Imperio central, pero la evidencia es difícil de identificar; particularmente en el suroeste de la capital, en la transición entre las cuencas de los ríos Lerma y Balsas y sus complejidades político-geográficas. Esta investigación se centra en el procesamiento basado en GIS de datos de múltiples fuentes, la prospección de sitios arqueológicos apoyada en la integración de datos espaciales de los sensores ópticos Sentinel-2, el vehículo aéreo no tripulado (UAV), el modelo digital del terreno (MDT), el índice de vegetación de diferencia normalizada (NDVI) y la validación de campo, que revelan la relación entre las morfologías del terreno y las modificaciones antrópicas. Un mapa binario expresa los posibles remanentes arqueológicos como un porcentaje; los píxeles del NDVI y los valores de morfometría se asociaron a características antrópicas (mesorrelieves con tendencia a geometrías regulares: pendiente, orientación e índice de rugosidad), y se interpretaron como probable evidencia arqueológica. Dentro del trabajo de campo arqueológico, con recursos limitados (tiempo, finanzas y auxiliares), este enfoque sugiere un método robusto que puede ser replicado en otros paisajes montañosos que están densamente cubiertos por vegetación. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Virtual Archaeology Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Mesoamerican Postclassic es_ES
dc.subject Aztec Empire es_ES
dc.subject Sentinel-2 optical sensors es_ES
dc.subject Digital Aerial Photogrammetry (DAP) es_ES
dc.subject Normalized Difference Vegetation Index (NDVI) es_ES
dc.subject Unmanned Aerial Vehicles (UAVs) es_ES
dc.subject Posclásico mesoamericano es_ES
dc.subject Imperio azteca es_ES
dc.subject Sensores ópticos Sentinel-2 es_ES
dc.subject Vehículo aéreo no tripulado (VANT) es_ES
dc.subject Fotogrametría digital aérea (DAP) es_ES
dc.subject Índice de vegetación de diferencia normalizada (NDVI) es_ES
dc.title Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits es_ES
dc.title.alternative Integración geoespacial para mapear asentamientos prehispánicos en los límites del imperio azteca es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/var.2022.16106
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Miranda-Gómez, R.; Cabadas-Báez, HV.; Antonio-Némiga, X.; Dávila-Hernández, N. (2022). Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits. Virtual Archaeology Review. 13(27):49-65. https://doi.org/10.4995/var.2022.16106 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2022.16106 es_ES
dc.description.upvformatpinicio 49 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 27 es_ES
dc.identifier.eissn 1989-9947
dc.relation.pasarela OJS\16106 es_ES
dc.description.references Abate, N., Elfadaly, A., Masini, N., & Lasaponara, R. (2020). Multitemporal 2016-2018 Sentinel-2 data enhancement for landscape archaeology: the case study of the Foggia Province, Southern Italy. Remote Sensing, 12(8), 1309. https://doi.org/10.3390/rs12081309 es_ES
dc.description.references Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones, 4(3), 46. https://doi.org/10.3390/drones4030046 es_ES
dc.description.references Agapiou, A., Alexakis, D. D., Sarris, A., & Hadjimitsis, D. G. (2014). Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176 es_ES
dc.description.references Albores, Z. B. (2006). Una travesía conceptual del Matlatzinco al Valle de Toluca. Anales de Antropología, 40(1), 253-282. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/antropologia/article/view/9961/pdf_123 es_ES
dc.description.references Arana, R. (1990). Proyecto Coatlán. Área Tonatico-Pilcaya. Colección científica. Serie Arqueología. Ciudad de México: Instituto Nacional de Antropología e Historia. es_ES
dc.description.references Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Science, 7(6), 637-650. https://doi.org/10.5194/nhess-7-637-2007 es_ES
dc.description.references Banning, E. B., Hawkins, A. L., & Stewart, S. T. (2006). Detection functions for archaeological survey. American Antiquity, 71(4), 723-742. https://doi.org/10.2307/40035886 es_ES
dc.description.references Barlow, R. H. (1992). La frontera tarasca, in J. Monjaras-Ruiz, E. Limón, & M. de la C.Paillés (Eds), Obras de Robert Barlow,Volumen. 4, La extensión del imperio de los culhua mexica (pp. 34-45). Puebla: INAH y Universidad de las Américas. es_ES
dc.description.references Bennett, R., Welham, K., Hill, R., & Ford, A. (2012). The application of vegetation indices for the prospection of archaeological features in grass-dominated environments. Archaeological Prospection, 19(3), 209-218. https://doi.org/10.1002/arp.1429 es_ES
dc.description.references Berdan, F. (1996). The tributary provinces. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith & E. Umberger (Eds.), Aztec Imperial Strategies (pp- 115-135). Washington DC: Dumbarton Oaks. es_ES
dc.description.references Berdan, F. (2017). Late Postclassic Mesoamerican trade networks and imperial expansion. Journal of Globalization Studies, 8(1), 14-29. Retrieved July 07, 2021, from https://www.sociostudies.org/journal/articles/939197/ es_ES
dc.description.references Borejsza, A. (2018). Las nueve reencarnaciones de Matlatzinco. Comentarios acerca de la estructura del altepetl y un intento más de acomodar el rompecabezas terminológico matlatzinca. Anales de Antropología, 52(2), 71-93. https://doi.org/10.22201/iia.24486221e.2018.2.64952 es_ES
dc.description.references Bourgeau-Chavez, L., Lee, Y., Battaglia, M., Endres, S., Laubach, Z., & Scarbrough, K. (2016). Identification of woodland vernal pools with seasonal change PALSAR data for habitat conservation. Remote Sensing, 8(6), 490. https://doi.org/10.3390/rs8060490 es_ES
dc.description.references Brooke, C., & Clutterbuck, B. (2020). Mapping heterogeneous buried archaeological features using multisensor data from Unmanned Aerial Vehicles. Remote Sensing, 12(1), 41. https://doi.org/10.3390/rs12010041 es_ES
dc.description.references Calleja, J. F., Requejo, O., Díaz-Álvarez, N., Peón, J., Gutiérrez, N., Martín-Hernández, E., Cebada, A., Rubio, D., & Fernández, P. (2018). Detection of buried archeological remains with the combined use of satellite multispectral data and UAV data. International Journal of Applied Earth Observation and Geoinformation, 73(1), 555-573. https://doi.org/10.1016/j.jag.2018.07.023 es_ES
dc.description.references Campa, M. F., & Coney, P. J. (1983). Tectono-stratigraphic terrranes and mineral resources distributions in Mexico. Canadian Journal of Earth Sciences, 20(6), 1040-1051. https://doi.org/10.1139/e83-094 es_ES
dc.description.references Cantú Ayala, C. M., Estrada Arellano, J. R., Salinas Rodríguez, M. M., Marmolejo Monsiváis, J. G., & Estrada Castillón, E. A. (2013). Vacíos y omisiones en conservación de ecorregiones de montaña en México. Revista Mexicana de Ciencias Forestales, 4(17), 11-27. https://doi.org/10.29298/rmcf.v4i17.417 es_ES
dc.description.references Capra, L., & Macías, J. L. (2000). Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. Journal of Volcanology and Geothermal Research, 102(1-2), 149-167. https://doi.org/10.1016/S0377-0273(00)00186-4 es_ES
dc.description.references Carrasco, P. (1996). Estructura político-territorial del Imperio Tenochca. La Triple Alianza de Tenochtitlan, Tetzcoco y Tlacopan. Ciudad de México: El Colegio de México y Fondo de Cultura Económica. es_ES
dc.description.references Castillo, L., Serván, F., & Patroni, K. (2019). Documenting archaeological sites on mountains and slopes with drones. Advances in Archaeological Practice, 7(4), 337-352. https://doi.org/10.1017/aap.2019.35 es_ES
dc.description.references Chase, A., Chase, D., & Chase, A. (2017). LiDAR for archaeological research and the study of historical landscapes. In N. Masini, & F. Soldoveri (Eds.), Sensing the past. Geotechnologies and the Environment 16, (pp. 89-100). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-50518-3_4 es_ES
dc.description.references Códice Mendoza. (2014). Retrieved July 7, 2021, from https://codicemendoza.inah.gob.mx es_ES
dc.description.references Danese, M., Masini, N., Biscione, M., & Lasaponara, R. (2014). Predictive modelling for preventive archaeology: overview and case study. Central European Journal of Geosciences, 6(1), 42-55. https://doi.org/10.2478/s13533-012-0160-5 es_ES
dc.description.references De la Peña, V. R., Guevara, M., Favila, H., & Siles, P. D. (2008). Reconocimiento arqueológico del municipio de Ocuilan de Arteaga, Estado de México. Expresión Antropológica, 34, 61-71. es_ES
dc.description.references De Laet, V., Paulissen, E., & Waelkens, M. (2007). Methods for the extraction of archeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science, 34(5), 830-84. https://doi.org/10.1016/j.jas.2006.09.013 es_ES
dc.description.references ESA (2018). Copernicus Open Access Hub. Retrieved July 15, 2018 from https://scihub.copernicus.eu/dhus/#/home es_ES
dc.description.references Espa, G., Benedetti, R., De Meo, A., Ricci, U., & Espa, S. (2006). GIS based models and estimation methods for the probability of archaeological site location. Journal of Cultural Heritage, 7(3), 147-155. https://doi.org/10.1016/j.culher.2006.06.001 es_ES
dc.description.references Fernández Christlieb, F., & García Zambrano, A. J. (2006). Territorialidad y paisaje en el altepetl del siglo XVI. Ciudad de México: Fondo de Cultura Económica e Instituto de Geografía UNAM. es_ES
dc.description.references Fernández-Hernández, J., González-Aguilera, D., Rodríguez-González, P., & Mancera-Taboada, J. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low-cost tool for archeological applications. Archaeometry, 57(1), 128-145. https://doi.org/10.1111/arcm.12078 es_ES
dc.description.references Fernández-Lozano, J., & Gutiérrez-Alonso,G. (2016). Improving archeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports, 5,(1) 509-520, https://doi.org/10.1016/j.jasrep.2016.01.007. es_ES
dc.description.references Feuer, B. (2016). Boundaries, borders and frontiers in archeology: a study of spatial relationships. Jefferson, NC: McFarland & Company Inc. es_ES
dc.description.references García Castro, R., (1999). Indios, territorio y poder en la provincial Matlatzinca. La negación del espacio politico de los pueblos otomianos, siglos XV-XVII. México: El Colegio de México. es_ES
dc.description.references García Castro, R. (2013). Suma de visitas de pueblos de la Nueva España, 1548-1550. Toluca, México: Universidad Autónoma del Estado de México y El Colegio Mexiquense. es_ES
dc.description.references García-Palomo, A., Macías, J. L., Arce, J. L., Capra, L., Garduño, V. H., & Espíndola, J. M. (2002). Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Geological Society of America. Map and Chart Series MCH089, 1-26. es_ES
dc.description.references Garza, G., & Fernández, F. (2016). Los puertos de montaña de Atlatlahuca: un espacio estratégico en el siglo XVI. Investigaciones Geográficas, Boletín del Instituto de Geografía UNAM, 91(1), 137-151. https://doi.org/10.14350/rig.53179 es_ES
dc.description.references Giordan, D., Cignetti, M., Baldo, M., & Godone, M. (2017). Relationship between man-made environment and slope stability: the case of 2014 rainfall events in the terraced landscape of the Liguria region (northwestern Italy). Geomatics, Natural Hazards and Risk, 8(2), 1833-1852. https://doi.org/10.1080/19475705.2017.1391129 es_ES
dc.description.references Goodbody R. H., Coops, C., Marshall, P., Tompalski, P., & Crawford, P.(2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle, 93(1),71-81. https://doi.org/10.5558/tfc2017-012 es_ES
dc.description.references Golden, C., Murtha, T., Cook, B., Shaffer, D., Schroder, W., Hermitt, E., Alcover O., & Scherer, A. (2016). Reanalyzing environmental Lidar data for archaeology: Mesoamerican applications and implications. Journal of Archaeological Science: Reports, 9(1), 293-308. https://doi.org/10.1016/j.jasrep.2016.07.029 es_ES
dc.description.references González, R. G. (2010). Tierra y sociedad en la sierra oriental del valle de Toluca, siglos XV-XVIII. Del señorío otomiano a los pueblos coloniales. Toluca: Secretaría de Educación del Gobierno del Estado de México. es_ES
dc.description.references González, R. G. (2013). Señoríos, pueblos y comunidades. La organización político territorial en torno del Chicnahuitecatl, siglos XV-XVIII. Toluca: Universidad Autónoma del Estado de México, Facultad de Humanidades. es_ES
dc.description.references Gutiérrez, G., Erny, G., Friedman, A., Godsey, M., & Gradoz, M. (2016). Archaeological topography with small Unmanned Aerial Vehicles. The SAA Archaeological Record, 16(2),10-13. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420 es_ES
dc.description.references Gutiérrez, G. (2017). Aztec provinces of the Southern Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford handbook of the Aztecs (pp. 473-493). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.18 es_ES
dc.description.references Hassig, R. (1988). Aztec Warfare: Imperial Expansion and Political Control. Norman: University of Oklahoma Press, USA. es_ES
dc.description.references Hill, A. C. (2019). Economical drone mapping for archeology: comparison of efficiency and accuracy. Journal of Archaeological Science: Reports, 24(1), 80-91. https://doi.org/10.1016/j.jasrep.2018.12.011 es_ES
dc.description.references Hinojosa Baliño, I. (2016). Processing a detailed digital terrain model using photogrammetry and UAVS at Cerro de La Máscara, Sinaloa, Mexico. The SAA Archaeological Record, 16(2), 25-29. Retrieved July 07, 2021, from http://onlinedigeditions.com/publication/?i=293420 es_ES
dc.description.references INAH. (2018). Dirección de Registro Arqueológico. Folio 2ASA00016148. Retrieved January 14, 2020, from http://registropublico.inah.gob.mx es_ES
dc.description.references INEGI. (1999). Prontuario de información geográfica Coatepec Harinas., México. Retrieved January 14, 2020, from http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/15/15021.pdf es_ES
dc.description.references Isaac, B.L. (1983). Aztec warfare: goals and battlefield comportment. Ethnology, 22(2), 121-131. https://doi.org/10.2307/3773575 es_ES
dc.description.references Jaramillo, R. (1987). Proyecto Arqueológico del Valle de Malinalco y del Rio Chalma, Estado de México. Ciudad de México: IIA-UNAM. es_ES
dc.description.references Jensen, J. L. R., & Mathews, A. J. (2016). Assessment of image-based point cloud products to generate a bare earth Surface and estimate canopy heights in a woodland ecosystem. Remote Sensing, 8(1), 50. https://doi.org/10.3390/rs8010050 es_ES
dc.description.references Kirk, S. D., Thompson, A. E., & Lippitt, C. D. (2016). Predictive modelling for site detection using remotely sensed phenological data. Advances in archaeological practice, 4(1), 87-101. https://doi.org/10.7183/2326-3768.4.1.87 es_ES
dc.description.references Lasaponara, R., & Masini, N. (2016). Living in the golden age of digital archaeology. In O. Gervasi, M. Beniamino, M. Sanjay, M. Rocha-Carmelo, T. Torre-David, O. Bernady, E. Apduhan, & W. Stankova (Eds.), Computational science and its applications-ICCSA 2016 Lecture Notes in Computer Science, vol 9787 (pp. 597-610). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42108-7_47 es_ES
dc.description.references Ledergerber-de-kohli, P. (1984). Planteamientos para promover el desarrollo de la arqueología de rescate en América Latina. Boletín de Antropología Americana, 10(1), 109-117. Retrieved July 07, 2021, from http://www.jstor.org/stable/40977066 es_ES
dc.description.references León-Portilla, M., (2000). Los Aztecas, disquisiciones sobre un gentilicio. Estudios de Cultura Náhuatl, 31(1), 307-313. México. Retrieved July 07, 2021, from https://nahuatl.historicas.unam.mx/index.php/ecn/article/view/9231 es_ES
dc.description.references López Wario, L.A. (2016). Arqueología de salvamento y programas constructivos en México. Relaciones Estudios de Historia y Sociedad, 37(148), 101-129. Retrieved July 07, 2021, from http://www.revistarelaciones.com/index.php/relaciones/article/view/REHS148_05/274 es_ES
dc.description.references Lockhart, J. (1999). Los nahuas después de la conquista. Historia social y cultural de los indios del México central, del siglo XVI al XVII. Ciudad de México: Fondo de Cultura Económica. es_ES
dc.description.references Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 es_ES
dc.description.references Malaperdas, G., & Zacharias, N. (2019). The habitation Model Trend Calculation (MTC): A new effective tool for predictive modelling in archeology. Geo-spatial Information Science, 22(4), 314-331. https://doi.org/10.1080/10095020.2019.1634320 es_ES
dc.description.references Martinez-Rubi, O., Verhoeven, S., Meersbergen, V., Schütz, M., Oosterom, P., Goncalves, R., & Tijssen, T. (2015). Taming the beast: free and open-source massive point cloud web visualization. In Capturing Reality 2015 (pp. 1-12). Salzburg, Austria. es_ES
dc.description.references McAnany, P. A., & Rowe, S. M. (2015). Re-visiting the field: Collaborative archeology as paradigm shift. Journal of Field Archaeology, 40(5), 499-507. https://doi.org/10.1179/2042458215Y.0000000007 es_ES
dc.description.references Menze, B. H., Ur, J. A., & Sherratt, A.G., (2006). Detection of ancient settlement mounds. Photogrammetric Engineering & Remote Sensing, 72(3), 321–327. https://doi.org/10.14358/PERS.72.3.321 es_ES
dc.description.references Mink, P., Ripy, J., Bailey, K., & Grossardt, T., (2009). Predictive archaeological modelling using GIS-Based Fuzzy set estimation: a case study in Woodford County, Kentucky, In Proceedings of ESRI Users Conference 2009. Paper 1495. Kentucky: Kentucky Transportation Center Faculty and Researcher Publications. Retrieved July 07, 2021, from https://uknowledge.uky.edu/ktc_facpub/12 es_ES
dc.description.references Moe, K. T., Owari, T., Furuya, N., & Hiroshima, T., (2020) Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests, 11 (2), 223. https://doi.org/10.3390/f11020223 es_ES
dc.description.references Murtha, T. M., Broadbent, E. N., Golden, C., Scherer, A., Schroder, W., Wilkinson, B., & Zambrano, A. A. (2019). Drone-mounted Lidar survey of Maya settlement and landscape. Latinamerican Antiquity, 30(3), 630-636. https://doi.org/10.1017/laq.2019.51 es_ES
dc.description.references Nieto, C. R. (2012). De la Cuenca de México al Valle de Toluca: estudio de la interacción y desplazamientos poblacionales en la época prehispánica. (Doctoral dissertation, Universidad Nacional Autónoma de México). Retrieved from http://132.248.9.195/ptd2012/noviembre/0685954/Index.html es_ES
dc.description.references Noviello, M., Cafarelli, B., Calculli, C., Sarris, A., & Mairota, P. (2018). Investigating the distribution of archeological sites: multiparametric vs probability models and potentials for remote sensing data. Applied Geography, 95(1), 34-44. https://doi.org/10.1016/j.apgeog.2018.04.005 es_ES
dc.description.references O’Driscoll, J. (2018). Landscape applications of photogrammetry using unmanned aerial vehicles. Journal of Archaeological Science: Reports, 22(1), 32-44. https://doi.org/10.1016/j.jasrep.2018.09.010 es_ES
dc.description.references Palma, L., V. (2014). Relaciones de dominación y poder entre los Matlatzincas de Tenanzinco. Estudios de Cultura Otopame, 9(1), 19-38. Retrieved July 07, 2021, from http://www.revistas.unam.mx/index.php/eco/article/view/51407 es_ES
dc.description.references Parcak, S. H., (2017). GIS, remote sensing, and landscape archaeology. Retrieved March 22, 2020, from Oxford Handbooks Online https://doi.org/10.1093/oxfordhb/9780199935413.013.11 es_ES
dc.description.references Patruno, J., Fitrzyk, M., & Delgado, J. M. (2020). Monitoring and detecting archaeological features with multi-frequency polarimetric analysis. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010001 es_ES
dc.description.references Ramírez, J., & Avitia, J. (2018). Corredor florícola del Estado de México: la percepción de la población del cambio climático. In E. Pérez, & E. Mota (Eds), Desarrollo regional sustentable y turismo (pp. 272-292). Ciudad de México: Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C. es_ES
dc.description.references Riley, S., Degloria, S., & Elliot, S. D. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Science, 5(1-4), 23-27. es_ES
dc.description.references Roman, A., Tudor-Mihai, U., Fărcaş, S., Opreanu, C. H., & Lăzărescu, V. (2019). Documenting ancient anthropogenic signatures by remotely sensing the current vegetation spectral and 3D patterns: a case study at Roman Porolissum archeological site (Romania). Quaternary International, 523(1), 89-100. https://doi.org/10.1016/j.quaint.2019.07.002 es_ES
dc.description.references Rouse, L., & Krumnow, J. (2020). On the fly: strategies for UAV-based archeological survey in mountainous areas of Central Asia and their implications for landscape research. Journal of Archaeological Science: Reports, 30(1), 102275. https://doi.org/10.1016/j.jasrep.2020.102275 es_ES
dc.description.references Ruz Barrio, M. A. (2019). Acercamiento al uso de la tierra en el valle de Matlatzinco a través de los mapas-códice coloniales. Anales de Antropología, 53(2), 83-93. http://dx.doi.org/10.22201/iia.24486221e.2019.2.67095 es_ES
dc.description.references Salach, A., Bakuła, K., Pilarska, M., Ostrowski, W., Górski, K., & Kurczyński, Z. (2018). Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International. Journal of Geo-Information, 7(9), 342. https://doi.org/10.3390/ijgi7090342 es_ES
dc.description.references Sanders, W. T., Parsons, J. R., & Santley, R. S. (1979). The Basin of Mexico: ecological process in the evolution of civilization. New York: Academic Press. es_ES
dc.description.references SCT. (2019). Norma Oficial Mexicana NOM-107-SCT3-2019, que establece los requerimientos para operar un sistema de aeronave pilotada a distancia (RPAS) en el espacio aéreo mexicano. Secretaria de Comunicaciones y Transportes. Retrieved December 5, 2021, from https://www.sct.gob.mx/fileadmin/DireccionesGrales/DGAC-archivo/modulo2/nom-107-sct3-2019-201119.pdf es_ES
dc.description.references Sergheraert, M. (2017). Aztec provinces of the Central Highlands. In D. L. Nichols, & E. Rodríguez-Alegría (Eds.), The Oxford Handbook of the Aztecs (pp. 463-473). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199341962.013.17 es_ES
dc.description.references SGM. (2013). Carta Geológico-Minera Ixtapan de la Sal E14-A-57 escala 1:50,000. Pachuca: Servicio Geológico Mexicano. Retrieved January 14, 2020, from, https://mapserver.sgm.gob.mx/Cartas_Online/geologia/1614_E14-A57_GM.pdf es_ES
dc.description.references Silverstein, J. (2001). Aztec imperialism at Oztuma, Guerrero: Aztec-Chontal relations during the late postclassic and early colonial periods. Ancient Mesoamerica, 12(1), 31-48. https://doi.org/10.1017/S0956536101121115. es_ES
dc.description.references Silverstein, J. (2017). This land is my land. Identity and conflict on the Western frontier of the Aztec Empire. In C. D. Beaule (Ed.), Frontiers of Colonialism (pp. 293-324). University Press of Florida es_ES
dc.description.references Skentos, A., & Ourania, A. (2017). Landform analysis using terrain attributes. A GIS application on the island of Ikaria (Aegean Sea, Greece). Annals of Valahia, University of Targoviste Geographical Series, 17(1), 90-97. es_ES
dc.description.references Smith, M. E., & Berdan, F. F. (1996). Appendix 4: Province descriptions. In F. Berdan, R. Blanton, E. Boone, M. Hodge, M. Smith, & E. Umberger (Eds.), Aztec Imperial Strategies (pp. 265-349). Washington DC: Dumbarton Oaks Research Library and Collection. es_ES
dc.description.references Smith, M., & Sergheraert, M. (2012). The Aztec Empire. In D.L. Nichols (Ed.), The Oxford Handbook of Mesoamerican Archaeology (pp. 449-458). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195390933.013.0031 es_ES
dc.description.references Smith, M. E. (2008). Aztec city-state capitals. Gainesville: University Press of Florida. es_ES
dc.description.references Sober, E. (2009). Absence of evidence and evidence of absence: evidential transitivity in connection with fossils, fishing, fine-tuning, and firing squads. Philosophical Studies, 143(1), 63-90. https://doi.org/10.1007/s11098-008-9315-0 es_ES
dc.description.references Soroush, M., Mehrtash, A., Khazraee, E., & Ur, J. A. (2020). Deep learning in archaeological remote sensing: automated Qanat detection in the Kurdistan Region of Iraq. Remote Sensing, 12(3), 500. https://doi.org/10.3390/rs12030500 es_ES
dc.description.references Stone, C., Webster, M., Osborn, J., & Iqbal, I. (2016). Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry. Australian Forestry, 79(4), 271-282. https://doi.org/10.1080/00049158.2016.1241134 es_ES
dc.description.references Stott, D., Boyd, D. S., Beck, A., & Cohn, A. (2015). Airborne LiDAR for the detection of archaeological vegetation marks using biomass as a proxy. Remote Sensing, 7(2), 1594-1618. https://doi.org/10.3390/rs70201594 es_ES
dc.description.references Štular, B., Nuninger, L., & Oštir, K., (2012). Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science, 39, 3354-3360. https://doi.org/10.1016/j.jas.2012.05.029 es_ES
dc.description.references Sugiura, Y., & Nieto, R. (2014). Una reflexión sobre la preservación del patrimonio arqueológico: el caso de los sitios de escala menor en el Estado de México. Anales de Antropología, 48(2), 75-95. http://doi.org/10.1016/S0185-1225(14)70244-9 es_ES
dc.description.references Tomaszewski, B. M., & Smith, M. E. (2011). Polities, territory and historical change in Postclassic Matlatzinco (Toluca Valley, central Mexico). Journal of Historical Geography, 37(1), 22-39. https://doi.org/10.1016/j.jhg.2010.06.001 es_ES
dc.description.references Van Valkenburgh, P., Cushman, K. C., Castillo Butters, L. J., Rojas Vega, C., Roberts, C., Kepler, C., & Kellner, J. (2020). Lasers without lost cities: using drone Lidar to capture architectural complexity at Kuelap, Amazonas, Peru. Journal of Field Archaeology, 45(1), 75-88. https://doi.org/10.1080/00934690.2020.1713287 es_ES
dc.description.references Vaughn, S., & Crawford, T. (2009). A predictive model of archeological potential: an example from northwestern Belize. Applied Geography, 29(4), 542-555. https://doi.org/10.1016/j.apgeog.2009.01.001 es_ES
dc.description.references Vázquez, M., M. (2008). La formación de los pueblos de indios en el real de minas de Zacualpan, siglos XV-XII. (Undergraduate thesis). Universidad Autónoma del Estado de México, Mexico. es_ES
dc.description.references Wallach, E. (2019). Inference from absence: the case of archeology. Palgrave Communications, 5(94), 1-10. https://doi.org/10.1057/s41599-019-0307-9 es_ES
dc.description.references Wasowski, J. (1998). Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environmental Geology, 35, 197–209. https://doi.org/10.1007/s002540050306 es_ES
dc.description.references Wiratama, W., & Sim, D. (2019). Fusion network for change detection of high-resolution panchromatic imagery. Applied Sciences, 9(7), 1441. https://doi.org/10.3390/app9071441 es_ES
dc.description.references Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C., & Codding, B. F. (2020). Advancing predictive modeling in archeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS ONE, 15(10), e0239424. https://doi.org/10.1371/journal.pone.0239424 es_ES
dc.description.references Zhang, J., Hu, X., Dai, H., & Qu, S. (2020). DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sensing, 12(1), 178. https://doi.org/10.3390/rs12010178 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem