- -

La importancia de la temperatura del agua en las redes de abastecimiento

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

La importancia de la temperatura del agua en las redes de abastecimiento

Mostrar el registro completo del ítem

Díaz García, S.; González Pérez, J. (2022). La importancia de la temperatura del agua en las redes de abastecimiento. Ingeniería del Agua. 26(2):107-123. https://doi.org/10.4995/ia.2022.17366

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185343

Ficheros en el ítem

Metadatos del ítem

Título: La importancia de la temperatura del agua en las redes de abastecimiento
Otro titulo: The importance of water temperature in water supply systems
Autor: Díaz García, Sarai González Pérez, Javier
Fecha difusión:
Resumen:
[EN] Temperature affects the physical, chemical and biological processes involved in the transport of drinking water, conditioning its water quality. Different works have revealed the role of this variable in specific ...[+]


[ES] La temperatura afecta a los procesos físicos, químicos y biológicos involucrados en el transporte del agua potable, por lo que condiciona la calidad del agua suministrada. Diferentes trabajos han puesto de manifiesto ...[+]
Palabras clave: Water supply , Drinking water , Temperature , Water quality , Climate change , Redes de abastecimiento , Agua potable , Temperatura , Calidad del agua , Cambio climático
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2022.17366
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2022.17366
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//PID2019-111506RB-00
o:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000162
Agradecimientos:
Esta publicación es parte del proyecto de I+D+i PID2019-111506RB-00, financiado por MCIN/AEI/10.13039/501100011033. Los autores agradecen también la colaboración de la Junta de Comunidades de Castilla-La Mancha a través ...[+]
Tipo: Artículo

References

Abberton, C.L., Bereschenko, L., van der Wielen, P.W.J.J., Smith, C.J. 2016. Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli strains in drinking water microcosms. Applied and Environmental Microbiology, 82(17), 5320-5331. https://doi.org/10.1128/AEM.01569-16

Abdel-Aal, M., Smits, R., Mohamed, M., de Bussem, K., Schellart, A., Tait, S. 2014. Modelling the viability of heat recovery from combined sewers. Water Science and Technology, 70(2), 297-306. https://doi.org/10.2166/wst.2014.218

Abhijith, G.R., Kadinski, L., Ostfeld, A. 2021. Modeling bacterial regrowth and trihalomethane formation in drinking water distribution systems. Water, 13, 463. https//doi.org/10.3390/w13040463 [+]
Abberton, C.L., Bereschenko, L., van der Wielen, P.W.J.J., Smith, C.J. 2016. Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli strains in drinking water microcosms. Applied and Environmental Microbiology, 82(17), 5320-5331. https://doi.org/10.1128/AEM.01569-16

Abdel-Aal, M., Smits, R., Mohamed, M., de Bussem, K., Schellart, A., Tait, S. 2014. Modelling the viability of heat recovery from combined sewers. Water Science and Technology, 70(2), 297-306. https://doi.org/10.2166/wst.2014.218

Abhijith, G.R., Kadinski, L., Ostfeld, A. 2021. Modeling bacterial regrowth and trihalomethane formation in drinking water distribution systems. Water, 13, 463. https//doi.org/10.3390/w13040463

Agudelo-Vera, C., Avvedimento, S., Boxall, J., Creaco, E., de Kater, H., Di Nardo, A., Djukic, A., Douterelo, I., Fish, K.E.,

Iglesias Rey, P.L., Jacimovic, N., Jacobs, H.E., Kapelan, Z., Martínez Solano, J., Montoya Pachongo, C., Piller, O., Quintiliani, C., Rucka, J., Tuhovcak, L., Blokker, M. 2020. Drinking water temperature around the globe: understanding, policies, challenges and opportunities. Water, 12(4), 1049. https//doi.org/10.3390/w12041049

Ahmad, J.I., Liu, G., van der Wielen, P.W.J.J., Mederna, G., van der Hoek, J.P. 2020. Effects of cold recovery technology on the microbial drinking water quality in unchlorinated distribution systems. Environmental Research, 183, 109175. https//doi.org/10.1016/j.envres.2020.109175

AWWA. 1996. WATER STATS Survey. Denver, US.

Badache, M., Eslami-Nejad, P., Ouzzane, M., Aidoun, Z., Lamarche, L. 2016. A new modeling approach for improved ground temperature profile determination. Renewable Energy, 85, 436-444. https//doi.org/10.1016/j.renene.2015.06.020

Batté, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., Block, J.C. 2003. Biofilms in drinking water distribution systems. Reviews in Environmental Science and Biotechnology, 2, 147-168. https//doi.org/10.1023/B:RESB.0000040456.71537.29

Blokker, E.J.M., Vreeburg, J.H.G., Buchberger, S.G., van Dijk, J.C. 2008. Importance of demand modelling in network water quality models: a review. Drinking Water Engineering and Science, 1, 27-38. https//doi.org/10.5194/dwes-1-27-2008

Blokker, E.J.M., Pieterse-Quirijns, I., 2013. Modeling temperature in the drinking water distribution system. Journal American Water Works Association, 105, E19-E28. https//doi.org/10.5942/jawwa.2013.105.0011

Blokker, M., Vreeburg, J., Speight, V. 2014. Residual chlorine in the extremities of the drinking water distribution system: the influence of stochastic water demands. Procedia Engineering, 70, 172-180. https//doi.org/10.1016/j.proeng.2014.02.020

Boccelli, D.L., Tryby, M.E., Uber, J.G., Summers, R.S. 2003. A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research, 37(11), 2654-2666. https//doi.org/10.1016/S0043-1354(03)00067-8

Bondank, E.M., Chester, M.V., Ruddell, B.L. 2018. Water distribution system failure risks with increasing temperatures.

Environmental Science and Technology, 52, 9605-9614. https//doi.org/10.1021/acs.est.7b01591

Boxall, J.B., Skipworth, P.J., Saul, A.J. 2001. A novel approach to modelling sediment movement in distribution mains based on particle characteristics. Proceedings of the Computing and Control in the Water Industry Conference, De Monfort University, UK.

Buchberger, S.G., Wu, L. 1995. Model for instantaneous residential water demands. Journal of Hydraulic Engineering, 121(3), 232-246. https//doi.org/10.1061/(ASCE)0733-9429(1995)121:3(232)

Calero, C., Boxall, J., Soria-Carrasco, V., Martínez, S., Douterelo, I. 2021. Implications of climate change: How does increased water temperature influence biofilm and water quality of chlorinated drinking water distribution systems? Frontiers in Microbiology, 12, 658927. https//doi.org/10.3389/fmicb.2021.658927

Çengel, Y., Ghajar, A. 2011. Heat and mass transfer: fundamentals and applications, 4th Edition. McGraw-Hill, Portland, USA.

Chalhoub, M., Bernier, M., Coquet, Y., Philippe, M. 2017. A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers. Renewable Energy, 103, 295-307. https//doi.org/10.1016/j.renene.2016.11.027

Claesson, J., Dunand, A. 1983. Heat extraction from the ground by horizontal pipes: a mathematical analysis. Report No. D1, Swedish Council for Building Research, Stockholm, Sweden.

Clark, R.M., Impellitteri, C.A., Schupp, D.A., Panguluri, S. 2012. The effect of velocity on the maintenance of chlorine and chloramine residuals. In: Proceedings of Water Distribution Systems Analysis Conference, Adelaide, Australia, 1301-1315.

Cook, D., Husband, S., Boxall, J. 2015. Operational management of trunk main discolouration risk. Urban Water Journal, 13, 382-395. https//doi.org/10.1080/1573062X.2014.993994

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M. 1995. Microbial biofilms. Annual Review of Microbiology, 49, 711-745. https//doi.org/10.1146/annurev.mi.49.100195.003431

Da Luz, N., Kumpel, E. 2020. Evaluating the impact of sampling design on drinking water quality monitoring program outcomes. Water Research, 185, 116217. https//doi.org/10.1016/j.watres.2020.116217

Delpla, I., Jung, A.V., Baures, E., Clement, M., Thomas, O. 2009, Impacts of climate change on surface water quality in relation to drinking water production. Environmental International, 35, 1225-1233. https//doi.org/10.1016/j.envint.2009.07.001

Díaz, S., González, J. 2021. Temporal scale effect analysis for water supply systems monitoring based on a microcomponent stochastic demand model. Journal of Water Resources Planning and Management, 147(5), 04021023. https//doi.org/10.1061/(ASCE)WR.1943-5452.0001352

Díaz, S., González, J., Galán, A. 2021. Residential micro-consumption characterization based on the user perspective in a citizen science initiative: the #50lWaterChallenge experience. Ingeniería del Agua, 25(3), 169-185. https//doi.org/10.4995/Ia.2021.14998

Douterelo, I., Sharpe, R.L., Husband, S., Fish, K.E., Boxall, J.B. 2018 Understanding microbial ecology to improve management of drinking water distribution systems. Wires Water, 6, e01325. https//doi.org/10.1002/wat2.1325

Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E., Biggs, C.A. 2014. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Research, 65, 134-156. https//doi.org/10.1016/j.watres.2014.07.008

Durrenmatt, D., Wanner, O. 2008. Simulation of the wastewater temperature in sewers with TEMPEST. Water Science and Technology, 57(11), 1809-1815. https//doi.org/10.2166/wst.2008.291

Eck, B. J., Saito, H., McKenna, S.A. 2016. Temperature dynamics and water quality in distribution systems. IBM Journal of Research and Development, 60(5/6), 7:1-7:8. https//doi.org/10.1147/JRD.2016.2594128

Edberg, S.C., Rice, E.W., Karlin, R.J., Allen, M.J. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. Journal of Applied Microbiology, 88, 106S-116S. https//doi.org/10.1111/j.1365-2672.2000.tb05338.x

Fish, K.E., Osborn, A.M., Boxall, J. 2016. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environmental Science Water Research and Technology, 2(4), 614-630. https//doi.org/10.1039/C6EW00039H

Fisher, I., Kastl, G., Sathasivan, A., Jegatheesan, V. 2011a. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Critical Reviews in Environmental Science and Technology, 41(20), 1843-1882. https//doi.org/10.1080/10643389.2010.495639

Fisher, I., Kastl, G., Sathasivan, A. 2011b. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Research, 45, 4896-4908. https//doi.org/10.1016/j.watres.2011.06.032

Fisher, I., Kastl, G., Sathasivan, A. 2012. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems. Water Research, 46, 3293-3303. https//doi.org/10.1016/j.watres.2012.03.017

Fisher, I., Kastl, G., Sathasivan, A. 2017. New model of chlorine wall-reaction for simulating chlorine concentration in drinking water distribution systems. Water Research, 125, 427-437. https//doi.org/10.1016/j.watres.2017.08.066

Flemming, H.C. (2002) Biofouling in water systems – cases, causes and countermeasures. Applied Microbiology and Biotechnology, 59, 629-640. https//doi.org/10.1007/s00253-002-1066-9

Fontaine, P., Marcotte, D., Pasquier, P., Thibodeau, D. 2011. Modeling of horizontal geoexchange systems for building heating and permafrost stabilization. Geothermics, 40, 211-220. https//doi.org/10.1016/j.geothermics.2011.07.002

Gagnon, G., Volk, C.J., Chauret, C., Murphy, H.M., O’Leary, K.C.O., Andrews, R.C. 2006. Changes in microbiological quality in model distribution systems after switching from chlorine or chloramines to chlorine dioxide. Journal of Water Supply: Research and Technology – AQUA, 55(5), 301-311. https//doi.org/10.2166/aqua.2006.011

Gan, G. 2019. A numerical methodology for comprehensive assessment of the dynamic thermal performance of horizontal ground heat exchangers. Thermal Science and Engineering Progress, 11, 365-379. https//doi.org/10.1016/j.tsep.2019.04.013

Grayman, W. 2018. History of water quality modelling in distribution systems. In: Proceedings of 1st International WDSA/CCWI Joint Conference, Kingston, Canada.

Hallam, N.B., West, J.R., Forster, C.F., Powell, J.C., Spencer, I. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Research, 36, 3479-3488. https//doi.org/10.1016/S0043-1354(02)00056-8

IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou, eds.). Cambridge University Press. In Press.

Jun, H.J., Park, J.K., Bae, C.H. 2020 Factors affecting steel water-transmission pipe failure and pipe-failure mechanisms. Journal of Environmental Engineering, 146(6), 04020034. https//doi.org/10.1061/(ASCE)EE.1943-7870.0001692

Kusuda, T., Achenbach, P. 1965. Earth temperature and thermal diffusivity at selected stations in the United States. National Bureau of Standards, Washington, USA.

Lai, Y., Dzombak, D.A. 2021. Assessing the effect of changing ambient air temperature on water temperature and quality in drinking water distribution systems. Water, 13, 1916. https//doi.org/10.3390/w13141916

Lamarche, L. 2019. Horizontal ground heat exchangers modelling. Applied Thermal Engineering, 155, 534-545. https//doi.org/10.1016/j.applthermaleng.2019.04.006

LeChevallier, M.W., Welch, N.J., Smith, D.B. 1996. Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62(7), 2201-2211. https//doi.org/10.1128/aem.62.7.2201-2211.1996

Li, M., Liu, Z., Chen, Y., Korshin, G.V. 2020. Effects of varying temperatures and alkalinities on the corrosion and heavy metal release from low-lead galvanized steel. Environmental Science and Pollution Research, 27, 2412-2422. https//doi.org/10.1007/s11356-019-06893-2

Li, C.Q., Mahmoodia, M. 2013. Risk based service life prediction of underground cast iron pipes subjected to corrosion. Reliability Engineering and System Safety, 119, 102-108. https//doi.org/10.1016/j.ress.2013.05.013

Magini, R., Pallavicini, I., Guercio, R. 2008. Spatial and temporal scaling properties of water demand. Journal of Water Resources Planning and Management, 134(3), 276-284. https//doi.org/10.1061/(ASCE)0733-9496(2008)134:3(276)

Masters, S., Welter, G.J., Edwards, M. 2016 Seasonal variations in lead release to potable water. Environmental Science and Technology, 50(10), 5269-5277. https//doi.org/10.1021/acs.est.5b05060

McNeill, L.S., Edwards, M. 2001. Iron pipe corrosion in distribution systems. Journal American Water Works Association, 93(7), 88-100. https//doi.org/10.1002/j.1551-8833.2001.tb09246.x

McNeill, L.S., Edwards, M. 2002. The importance of temperature in assessing iron pipe corrosion in water distribution systems. Environmental Monitoring and Assessment, 77, 229-242. https//doi.org/10.1023/A:1016021815596

Mi, Z., Dai, Y., Xie, S., Chen, C., Zhang, X. 2015. Impact of disinfection on drinking water biofilm bacterial community. Journal of Environmental Sciences, 37(1), 200-205. https//doi.org/10.1016/j.jes.2015.04.008

Minaee, R.P., Mokhtari, M., Moghaddam, A., Ebrahimi, A.A., Askarishashi, M., Afsharnia, M. 2019. Wall decay coefficient estimation in a real-life drinking water distribution network. Water Resources Management, 33, 1557-1569. https//doi.org/10.1007/s11269-019-02206-x

Monteiro, L., Figuereido, D., Días, S., Freitas, R., Covas, D., Menaia, J., Coelho, S.T. 2014. Modeling of chlorine decay in drinking water supply systems using EPANET MSX. Procedia Engineering, 70, 1192-1200. https//doi.org/10.1016/j.proeng.2014.02.132

Monteiro, L., Figuereido, D., Covas, D., Menaia, J. 2017. Integrating water temperature in chlorine decay modelling: a case study. Urban Water Journal, 14(10), 1097-1101. https//doi.org/10.1080/1573062X.2017.1363249

Montoya-Pachongo, C., Douterelo, I., Noakes, C., Camargo-Valero, M.A., Sleigh, A., Escobar-Rivera, J.C., Torres-Lozada, P. 2018. Field assessment of bacterial communities and total trihalomethanes: implications for drinking water networks. Science of the Total Environment, 616-617, 345-354. https//doi.org/10.1016/j.scitotenv.2017.10.254

Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., Hammes, F. 2014. Biological instability in a chlorinated drinking water distribution network. PLoS One, 9, e096354. https//doi.org/10.1371/journal.pone.0096354

Netto, T.A., Ferraz, U.S., Estefen, S.F. 2005. The effect of corrosion defects on the burst pressure of pipelines. Journal of Constructional Steel Research, 61, 1185-1204. https//doi.org/10.1016/j.jcsr.2005.02.010

Ozdemir, O.M., Buyruk, T. 2018. Effect of travel time and temperature on chlorine bulk decay in water supply pipes. Journal of Environmental Engineering, 144(3), 04018002. https//doi.org/10.1061/(ASCE)EE.1943-7870.0001321

Percival, S.L., Walker, J.T. 1999. Potable water and biofilms: a review of the public health implications. Biofouling, 14(2), 99-115. https//doi.org/10.1080/08927019909378402

Pick, F., Fish, K., Husband, S., Boxall, J. 2021. Non-invasive biofouling monitoring to assess drinking water distribution system performance. Frontiers in Microbiology, 12, 730344. https//doi.org/10.3389/fmicb.2021.730344

Piller, O., Tavard, L. 2014. Modeling the transport of physicochemical parameters for water network security. Procedia Engineering, 70, 1344-1352. https//doi.org/10.1016/j.proeng.2014.02.148

Powell, J.C., Hallam, N.B., West, J.R., Forster, C.F., Simms, J. 2000. Factors which control bulk chlorine decay rates. Water Research, 34(1), 117-126. https//doi.org/10.1016/S0043-1354(99)00097-4

Rodríguez, M.J., Sérodes, J.B. 2001. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Research, 35(6), 1572-1586. https//doi.org/10.1016/S0043-1354(00)00403-6

Rodríguez, M.J., Sérodes, J.B., Levallois, P. 2004. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution systems. Water Research, 38, 4367-4382. https//doi.org/10.1016/j.watres.2004.08.018

Rossman, L.A. 1993. EPANET – An advanced water quality modelling package for distribution systems. In: Proceedings of AWWA Annual Conference, San Antonio, Texas.

Rossman, L.A., Clark, R.M., Grayman, W.M. 1994. Modeling chlorine residuals in drinking-water distribution systems. Journal of Environmental Engineering, 120(4), 803-820. https//doi.org/10.1061/(ASCE)0733-9372(1994)120:4(803)

Rossman, L.A., Woo, H., Tryby, M., Shang, F., Janke, R., Haxton, T. 2020. EPANET 2.2 User Manual. US Environmental Protection Agency, Ohio, USA.

Rushing, J.C., Edwards, M. 2004. The role of temperature gradients in residential copper pipe corrosion. Corrosion Science, 46(8), 1883-1894. https//doi.org/10.1016/j.corsci.2003.11.001

Sadiq, R., Rajani, B., Kleiner, Y. 2004. Probabilistic risk analysis of corrosion associated failures in cast iron water mains. Reliability Engineering and System Safety, 86, 1-10. https//doi.org/10.1016/j.ress.2003.12.007

Schleich, C., Chan, S., Pullerits, K., Besmer, M.D., Paul, C.J., Radstrom, P., Keuchen, A. 2019. Mapping dynamics of bacterial communities in a full-scale drinking water distribution system using flow cytometry. Water, 11(10), 2137. https//doi.org/10.3390/w11102137

Shang, F., Uber, J.G., Rossman, L.A. 2008. Modeling reaction and transport of multiple species in water distribution systems. Environmental Science and Technology, 42(3), 808-814. https//doi.org/10.1021/es072011z

Simoes, L.C., Simoes, M., Oliveira, R., Vieira, MJ. 2007. Potential of the adhesión of bacteria isolated from drinking water to materials. Journal of Basic Microbiology, 47, 174-183. https//doi.org/10.1002/jobm.200610224

Speight, V., Kaslbeek, W.D., DiGiano, F.A. 2004. Randomized stratified sampling methodology for water quality in distribution systems. Journal of Water Resources Planning and Management, 130(4), 330-338. https//doi.org/10.1061/(ASCE)0733-9496(2004)130:4(330)

Speight, V., Uber, J., Grayman, W., Martel, K., Friedman, M., Singer, P., DiGiano, F. 2009. Probabilistic modelling framework for assessing water quality sampling programs. Water Research Foundation, Denver, USA.

Speight, V., Boxall, J. 2015. Current perspectives on disinfectant modelling. Procedia Engineering, 119, 434-441. https//doi.org/10.1016/j.proeng.2015.08.906

Teixeira, A.P., Soares, C.G., Netto, A.T., Stefen, S.F. 2008. Reliability of pipelines with corrosion defects. International Journal of Pressure Vessels and Piping, 85, 228-237. https//doi.org/10.1016/j.ijpvp.2007.09.002

Tokajian, S., Hashwa, F. 2003. Water quality problems associated with intermittent water supply. Water Science and Technology, 47(3), 229-234. https//doi.org/10.2166/wst.2003.0200

Tsai, Y. 2005. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. Journal of Basic Microbiology, 45(6), 475-485. https//doi.org/10.1002/jobm.200510583

Uber, J., Boxall, J. 2010. Multi-species network water quality modelling: current examples, future potential, and research needs. Proceedings in Tenth Annual International Conference on Computing and Control for the Water Industry, Sheffield, UK.

Van Summeren, J., Raterman, B., Vonk, E., Blokker, M., van Erp, J., Vries, D. 2015. Influence of temperature, network diagnostics and demographic factors in discoloration-related customer reports. Procedia Engineering, 119, 416-425. https//doi.org/10.1016/j.proeng.2015.08.903

Vasconcelos, J.J., Rossman, L.A., Grayman, W.M., Boulos, P.F., Clark, R.M. 1997. Kinetics of chlorine decay. Journal American Water Works Association, 89(7), 54-65. https//doi.org/10.1002/j.1551-8833.1997.tb08259.x

Vidal, R., Martínez, F., Ayza, M. 1994. Aplicaciones de los modelos de calidad en la simulación de las redes de distribución de agua potable. Ingeniería del Agua, 1(3). https//doi.org/10.4995/ia.1994.2644

Vrachimis, S.G., Eliades, D.G., Polycarpou, M.M. 2021. Calculating chlorine concentration bounds in water distribution networks: a backtracking uncertainty bounding approach. Water Resources Research, 57(5), e2020WR028684. https//doi.org/10.1029/2020WR028684

Vreeburg, J.H.G., Boxall, J.B. 2007. Discolouration in potable water distribution systems: a review. Water Research, 41, 519-529. https//doi.org/10.1016/j.watres.2006.09.028

WHO. 2011. Guidelines for drinking water quality, 4th Edition. World Health Organization, Geneva, Switzerland.

WHO. 2017. Guidelines for drinking water quality, 4th Edition – 1st Addendum. World Health Organization, Geneva, Switzerland.

Xu, X., Liu, S., Smith, K., Cui, Y., Wang, Z. 2020. An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. Journal of Cleaner Production, 276, 124079. https//doi.org/10.1016/j.jclepro.2020.124079

Yang, X., Shang, C., Westerhoff, P. 2007. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Research, 41, 1193-1200. https//doi.org/10.1016/j.watres.2006.12.004

Zlatanovic, L., van der Hoek, J.P., Vreeburg, J.H.G. 2017. An experimental study on the influence of water stagnation

and temperature change on water quality in a full-scale domestic drinking water system. Water Research, 123, 761-772, https://doi.org/10.1016/j.watres.2017.07.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem