- -

La importancia de la temperatura del agua en las redes de abastecimiento

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

La importancia de la temperatura del agua en las redes de abastecimiento

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz García, Sarai es_ES
dc.contributor.author González Pérez, Javier es_ES
dc.date.accessioned 2022-09-06T11:30:47Z
dc.date.available 2022-09-06T11:30:47Z
dc.date.issued 2022-04-29
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/185343
dc.description.abstract [EN] Temperature affects the physical, chemical and biological processes involved in the transport of drinking water, conditioning its water quality. Different works have revealed the role of this variable in specific phenomena. At the same time, research has been carried out to characterize temperature behaviour in water supply systems and assess its modelling possibilities. All of them are independent contributions, but there is not a global and joint vision about the role of temperature in the behaviour of a water network, even though this variable is one of those that will be most affected by climate change. The aim of this work is to revise the importance of water temperature in the different processes that occur during water distribution and to compile what is known so far about temperature modelling in water supply systems. This literature review highlights the importance of thermal conditions in the different dynamics within a distribution network, detecting a need to improve knowledge about its behaviour. This is important not only to better understand water quality at present, but also to evaluate the potential complications that may arise in future climate change scenarios. es_ES
dc.description.abstract [ES] La temperatura afecta a los procesos físicos, químicos y biológicos involucrados en el transporte del agua potable, por lo que condiciona la calidad del agua suministrada. Diferentes trabajos han puesto de manifiesto el papel de esta variable de modo específico en cada proceso o fenómeno. A su vez, se han desarrollado investigaciones sobre el comportamiento de la temperatura en las redes de agua y las posibilidades para su modelización. Todas ellas son contribuciones independientes, pero no se cuenta con una visión global y conjunta del papel de la temperatura en el comportamiento de una red de distribución, aun cuando esta variable es una de las que más se verá afectada por el cambio climático. El objetivo de este artículo es revisar la importancia de la temperatura en los diferentes procesos a los que se ve sometida el agua a lo largo de la red de distribución y recopilar lo que se conoce hasta el momento sobre modelización de temperatura en redes de abastecimiento. Esta revisión de la literatura resalta la importancia de las condiciones térmicas en las diferentes dinámicas dentro de una red de distribución, detectando la necesidad de mejorar el conocimiento sobre su comportamiento, no solo para caracterizar la calidad del agua suministrada en la actualidad, sino también para evaluar las posibles complicaciones que pueden surgir en futuros escenarios de cambio climático. es_ES
dc.description.sponsorship Esta publicación es parte del proyecto de I+D+i PID2019-111506RB-00, financiado por MCIN/AEI/10.13039/501100011033. Los autores agradecen también la colaboración de la Junta de Comunidades de Castilla-La Mancha a través del proyecto SBPLY/19/180501/000162, cofinanciado por Fondos FEDER - Una manera de hacer Europa. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation o:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000162 es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Water supply es_ES
dc.subject Drinking water es_ES
dc.subject Temperature es_ES
dc.subject Water quality es_ES
dc.subject Climate change es_ES
dc.subject Redes de abastecimiento es_ES
dc.subject Agua potable es_ES
dc.subject Temperatura es_ES
dc.subject Calidad del agua es_ES
dc.subject Cambio climático es_ES
dc.title La importancia de la temperatura del agua en las redes de abastecimiento es_ES
dc.title.alternative The importance of water temperature in water supply systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2022.17366
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-111506RB-00 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Díaz García, S.; González Pérez, J. (2022). La importancia de la temperatura del agua en las redes de abastecimiento. Ingeniería del Agua. 26(2):107-123. https://doi.org/10.4995/ia.2022.17366 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2022.17366 es_ES
dc.description.upvformatpinicio 107 es_ES
dc.description.upvformatpfin 123 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\17366 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Abberton, C.L., Bereschenko, L., van der Wielen, P.W.J.J., Smith, C.J. 2016. Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli strains in drinking water microcosms. Applied and Environmental Microbiology, 82(17), 5320-5331. https://doi.org/10.1128/AEM.01569-16 es_ES
dc.description.references Abdel-Aal, M., Smits, R., Mohamed, M., de Bussem, K., Schellart, A., Tait, S. 2014. Modelling the viability of heat recovery from combined sewers. Water Science and Technology, 70(2), 297-306. https://doi.org/10.2166/wst.2014.218 es_ES
dc.description.references Abhijith, G.R., Kadinski, L., Ostfeld, A. 2021. Modeling bacterial regrowth and trihalomethane formation in drinking water distribution systems. Water, 13, 463. https//doi.org/10.3390/w13040463 es_ES
dc.description.references Agudelo-Vera, C., Avvedimento, S., Boxall, J., Creaco, E., de Kater, H., Di Nardo, A., Djukic, A., Douterelo, I., Fish, K.E., es_ES
dc.description.references Iglesias Rey, P.L., Jacimovic, N., Jacobs, H.E., Kapelan, Z., Martínez Solano, J., Montoya Pachongo, C., Piller, O., Quintiliani, C., Rucka, J., Tuhovcak, L., Blokker, M. 2020. Drinking water temperature around the globe: understanding, policies, challenges and opportunities. Water, 12(4), 1049. https//doi.org/10.3390/w12041049 es_ES
dc.description.references Ahmad, J.I., Liu, G., van der Wielen, P.W.J.J., Mederna, G., van der Hoek, J.P. 2020. Effects of cold recovery technology on the microbial drinking water quality in unchlorinated distribution systems. Environmental Research, 183, 109175. https//doi.org/10.1016/j.envres.2020.109175 es_ES
dc.description.references AWWA. 1996. WATER STATS Survey. Denver, US. es_ES
dc.description.references Badache, M., Eslami-Nejad, P., Ouzzane, M., Aidoun, Z., Lamarche, L. 2016. A new modeling approach for improved ground temperature profile determination. Renewable Energy, 85, 436-444. https//doi.org/10.1016/j.renene.2015.06.020 es_ES
dc.description.references Batté, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., Block, J.C. 2003. Biofilms in drinking water distribution systems. Reviews in Environmental Science and Biotechnology, 2, 147-168. https//doi.org/10.1023/B:RESB.0000040456.71537.29 es_ES
dc.description.references Blokker, E.J.M., Vreeburg, J.H.G., Buchberger, S.G., van Dijk, J.C. 2008. Importance of demand modelling in network water quality models: a review. Drinking Water Engineering and Science, 1, 27-38. https//doi.org/10.5194/dwes-1-27-2008 es_ES
dc.description.references Blokker, E.J.M., Pieterse-Quirijns, I., 2013. Modeling temperature in the drinking water distribution system. Journal American Water Works Association, 105, E19-E28. https//doi.org/10.5942/jawwa.2013.105.0011 es_ES
dc.description.references Blokker, M., Vreeburg, J., Speight, V. 2014. Residual chlorine in the extremities of the drinking water distribution system: the influence of stochastic water demands. Procedia Engineering, 70, 172-180. https//doi.org/10.1016/j.proeng.2014.02.020 es_ES
dc.description.references Boccelli, D.L., Tryby, M.E., Uber, J.G., Summers, R.S. 2003. A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research, 37(11), 2654-2666. https//doi.org/10.1016/S0043-1354(03)00067-8 es_ES
dc.description.references Bondank, E.M., Chester, M.V., Ruddell, B.L. 2018. Water distribution system failure risks with increasing temperatures. es_ES
dc.description.references Environmental Science and Technology, 52, 9605-9614. https//doi.org/10.1021/acs.est.7b01591 es_ES
dc.description.references Boxall, J.B., Skipworth, P.J., Saul, A.J. 2001. A novel approach to modelling sediment movement in distribution mains based on particle characteristics. Proceedings of the Computing and Control in the Water Industry Conference, De Monfort University, UK. es_ES
dc.description.references Buchberger, S.G., Wu, L. 1995. Model for instantaneous residential water demands. Journal of Hydraulic Engineering, 121(3), 232-246. https//doi.org/10.1061/(ASCE)0733-9429(1995)121:3(232) es_ES
dc.description.references Calero, C., Boxall, J., Soria-Carrasco, V., Martínez, S., Douterelo, I. 2021. Implications of climate change: How does increased water temperature influence biofilm and water quality of chlorinated drinking water distribution systems? Frontiers in Microbiology, 12, 658927. https//doi.org/10.3389/fmicb.2021.658927 es_ES
dc.description.references Çengel, Y., Ghajar, A. 2011. Heat and mass transfer: fundamentals and applications, 4th Edition. McGraw-Hill, Portland, USA. es_ES
dc.description.references Chalhoub, M., Bernier, M., Coquet, Y., Philippe, M. 2017. A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers. Renewable Energy, 103, 295-307. https//doi.org/10.1016/j.renene.2016.11.027 es_ES
dc.description.references Claesson, J., Dunand, A. 1983. Heat extraction from the ground by horizontal pipes: a mathematical analysis. Report No. D1, Swedish Council for Building Research, Stockholm, Sweden. es_ES
dc.description.references Clark, R.M., Impellitteri, C.A., Schupp, D.A., Panguluri, S. 2012. The effect of velocity on the maintenance of chlorine and chloramine residuals. In: Proceedings of Water Distribution Systems Analysis Conference, Adelaide, Australia, 1301-1315. es_ES
dc.description.references Cook, D., Husband, S., Boxall, J. 2015. Operational management of trunk main discolouration risk. Urban Water Journal, 13, 382-395. https//doi.org/10.1080/1573062X.2014.993994 es_ES
dc.description.references Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M. 1995. Microbial biofilms. Annual Review of Microbiology, 49, 711-745. https//doi.org/10.1146/annurev.mi.49.100195.003431 es_ES
dc.description.references Da Luz, N., Kumpel, E. 2020. Evaluating the impact of sampling design on drinking water quality monitoring program outcomes. Water Research, 185, 116217. https//doi.org/10.1016/j.watres.2020.116217 es_ES
dc.description.references Delpla, I., Jung, A.V., Baures, E., Clement, M., Thomas, O. 2009, Impacts of climate change on surface water quality in relation to drinking water production. Environmental International, 35, 1225-1233. https//doi.org/10.1016/j.envint.2009.07.001 es_ES
dc.description.references Díaz, S., González, J. 2021. Temporal scale effect analysis for water supply systems monitoring based on a microcomponent stochastic demand model. Journal of Water Resources Planning and Management, 147(5), 04021023. https//doi.org/10.1061/(ASCE)WR.1943-5452.0001352 es_ES
dc.description.references Díaz, S., González, J., Galán, A. 2021. Residential micro-consumption characterization based on the user perspective in a citizen science initiative: the #50lWaterChallenge experience. Ingeniería del Agua, 25(3), 169-185. https//doi.org/10.4995/Ia.2021.14998 es_ES
dc.description.references Douterelo, I., Sharpe, R.L., Husband, S., Fish, K.E., Boxall, J.B. 2018 Understanding microbial ecology to improve management of drinking water distribution systems. Wires Water, 6, e01325. https//doi.org/10.1002/wat2.1325 es_ES
dc.description.references Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E., Biggs, C.A. 2014. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Research, 65, 134-156. https//doi.org/10.1016/j.watres.2014.07.008 es_ES
dc.description.references Durrenmatt, D., Wanner, O. 2008. Simulation of the wastewater temperature in sewers with TEMPEST. Water Science and Technology, 57(11), 1809-1815. https//doi.org/10.2166/wst.2008.291 es_ES
dc.description.references Eck, B. J., Saito, H., McKenna, S.A. 2016. Temperature dynamics and water quality in distribution systems. IBM Journal of Research and Development, 60(5/6), 7:1-7:8. https//doi.org/10.1147/JRD.2016.2594128 es_ES
dc.description.references Edberg, S.C., Rice, E.W., Karlin, R.J., Allen, M.J. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. Journal of Applied Microbiology, 88, 106S-116S. https//doi.org/10.1111/j.1365-2672.2000.tb05338.x es_ES
dc.description.references Fish, K.E., Osborn, A.M., Boxall, J. 2016. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environmental Science Water Research and Technology, 2(4), 614-630. https//doi.org/10.1039/C6EW00039H es_ES
dc.description.references Fisher, I., Kastl, G., Sathasivan, A., Jegatheesan, V. 2011a. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Critical Reviews in Environmental Science and Technology, 41(20), 1843-1882. https//doi.org/10.1080/10643389.2010.495639 es_ES
dc.description.references Fisher, I., Kastl, G., Sathasivan, A. 2011b. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Research, 45, 4896-4908. https//doi.org/10.1016/j.watres.2011.06.032 es_ES
dc.description.references Fisher, I., Kastl, G., Sathasivan, A. 2012. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems. Water Research, 46, 3293-3303. https//doi.org/10.1016/j.watres.2012.03.017 es_ES
dc.description.references Fisher, I., Kastl, G., Sathasivan, A. 2017. New model of chlorine wall-reaction for simulating chlorine concentration in drinking water distribution systems. Water Research, 125, 427-437. https//doi.org/10.1016/j.watres.2017.08.066 es_ES
dc.description.references Flemming, H.C. (2002) Biofouling in water systems – cases, causes and countermeasures. Applied Microbiology and Biotechnology, 59, 629-640. https//doi.org/10.1007/s00253-002-1066-9 es_ES
dc.description.references Fontaine, P., Marcotte, D., Pasquier, P., Thibodeau, D. 2011. Modeling of horizontal geoexchange systems for building heating and permafrost stabilization. Geothermics, 40, 211-220. https//doi.org/10.1016/j.geothermics.2011.07.002 es_ES
dc.description.references Gagnon, G., Volk, C.J., Chauret, C., Murphy, H.M., O’Leary, K.C.O., Andrews, R.C. 2006. Changes in microbiological quality in model distribution systems after switching from chlorine or chloramines to chlorine dioxide. Journal of Water Supply: Research and Technology – AQUA, 55(5), 301-311. https//doi.org/10.2166/aqua.2006.011 es_ES
dc.description.references Gan, G. 2019. A numerical methodology for comprehensive assessment of the dynamic thermal performance of horizontal ground heat exchangers. Thermal Science and Engineering Progress, 11, 365-379. https//doi.org/10.1016/j.tsep.2019.04.013 es_ES
dc.description.references Grayman, W. 2018. History of water quality modelling in distribution systems. In: Proceedings of 1st International WDSA/CCWI Joint Conference, Kingston, Canada. es_ES
dc.description.references Hallam, N.B., West, J.R., Forster, C.F., Powell, J.C., Spencer, I. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Research, 36, 3479-3488. https//doi.org/10.1016/S0043-1354(02)00056-8 es_ES
dc.description.references IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou, eds.). Cambridge University Press. In Press. es_ES
dc.description.references Jun, H.J., Park, J.K., Bae, C.H. 2020 Factors affecting steel water-transmission pipe failure and pipe-failure mechanisms. Journal of Environmental Engineering, 146(6), 04020034. https//doi.org/10.1061/(ASCE)EE.1943-7870.0001692 es_ES
dc.description.references Kusuda, T., Achenbach, P. 1965. Earth temperature and thermal diffusivity at selected stations in the United States. National Bureau of Standards, Washington, USA. es_ES
dc.description.references Lai, Y., Dzombak, D.A. 2021. Assessing the effect of changing ambient air temperature on water temperature and quality in drinking water distribution systems. Water, 13, 1916. https//doi.org/10.3390/w13141916 es_ES
dc.description.references Lamarche, L. 2019. Horizontal ground heat exchangers modelling. Applied Thermal Engineering, 155, 534-545. https//doi.org/10.1016/j.applthermaleng.2019.04.006 es_ES
dc.description.references LeChevallier, M.W., Welch, N.J., Smith, D.B. 1996. Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62(7), 2201-2211. https//doi.org/10.1128/aem.62.7.2201-2211.1996 es_ES
dc.description.references Li, M., Liu, Z., Chen, Y., Korshin, G.V. 2020. Effects of varying temperatures and alkalinities on the corrosion and heavy metal release from low-lead galvanized steel. Environmental Science and Pollution Research, 27, 2412-2422. https//doi.org/10.1007/s11356-019-06893-2 es_ES
dc.description.references Li, C.Q., Mahmoodia, M. 2013. Risk based service life prediction of underground cast iron pipes subjected to corrosion. Reliability Engineering and System Safety, 119, 102-108. https//doi.org/10.1016/j.ress.2013.05.013 es_ES
dc.description.references Magini, R., Pallavicini, I., Guercio, R. 2008. Spatial and temporal scaling properties of water demand. Journal of Water Resources Planning and Management, 134(3), 276-284. https//doi.org/10.1061/(ASCE)0733-9496(2008)134:3(276) es_ES
dc.description.references Masters, S., Welter, G.J., Edwards, M. 2016 Seasonal variations in lead release to potable water. Environmental Science and Technology, 50(10), 5269-5277. https//doi.org/10.1021/acs.est.5b05060 es_ES
dc.description.references McNeill, L.S., Edwards, M. 2001. Iron pipe corrosion in distribution systems. Journal American Water Works Association, 93(7), 88-100. https//doi.org/10.1002/j.1551-8833.2001.tb09246.x es_ES
dc.description.references McNeill, L.S., Edwards, M. 2002. The importance of temperature in assessing iron pipe corrosion in water distribution systems. Environmental Monitoring and Assessment, 77, 229-242. https//doi.org/10.1023/A:1016021815596 es_ES
dc.description.references Mi, Z., Dai, Y., Xie, S., Chen, C., Zhang, X. 2015. Impact of disinfection on drinking water biofilm bacterial community. Journal of Environmental Sciences, 37(1), 200-205. https//doi.org/10.1016/j.jes.2015.04.008 es_ES
dc.description.references Minaee, R.P., Mokhtari, M., Moghaddam, A., Ebrahimi, A.A., Askarishashi, M., Afsharnia, M. 2019. Wall decay coefficient estimation in a real-life drinking water distribution network. Water Resources Management, 33, 1557-1569. https//doi.org/10.1007/s11269-019-02206-x es_ES
dc.description.references Monteiro, L., Figuereido, D., Días, S., Freitas, R., Covas, D., Menaia, J., Coelho, S.T. 2014. Modeling of chlorine decay in drinking water supply systems using EPANET MSX. Procedia Engineering, 70, 1192-1200. https//doi.org/10.1016/j.proeng.2014.02.132 es_ES
dc.description.references Monteiro, L., Figuereido, D., Covas, D., Menaia, J. 2017. Integrating water temperature in chlorine decay modelling: a case study. Urban Water Journal, 14(10), 1097-1101. https//doi.org/10.1080/1573062X.2017.1363249 es_ES
dc.description.references Montoya-Pachongo, C., Douterelo, I., Noakes, C., Camargo-Valero, M.A., Sleigh, A., Escobar-Rivera, J.C., Torres-Lozada, P. 2018. Field assessment of bacterial communities and total trihalomethanes: implications for drinking water networks. Science of the Total Environment, 616-617, 345-354. https//doi.org/10.1016/j.scitotenv.2017.10.254 es_ES
dc.description.references Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., Hammes, F. 2014. Biological instability in a chlorinated drinking water distribution network. PLoS One, 9, e096354. https//doi.org/10.1371/journal.pone.0096354 es_ES
dc.description.references Netto, T.A., Ferraz, U.S., Estefen, S.F. 2005. The effect of corrosion defects on the burst pressure of pipelines. Journal of Constructional Steel Research, 61, 1185-1204. https//doi.org/10.1016/j.jcsr.2005.02.010 es_ES
dc.description.references Ozdemir, O.M., Buyruk, T. 2018. Effect of travel time and temperature on chlorine bulk decay in water supply pipes. Journal of Environmental Engineering, 144(3), 04018002. https//doi.org/10.1061/(ASCE)EE.1943-7870.0001321 es_ES
dc.description.references Percival, S.L., Walker, J.T. 1999. Potable water and biofilms: a review of the public health implications. Biofouling, 14(2), 99-115. https//doi.org/10.1080/08927019909378402 es_ES
dc.description.references Pick, F., Fish, K., Husband, S., Boxall, J. 2021. Non-invasive biofouling monitoring to assess drinking water distribution system performance. Frontiers in Microbiology, 12, 730344. https//doi.org/10.3389/fmicb.2021.730344 es_ES
dc.description.references Piller, O., Tavard, L. 2014. Modeling the transport of physicochemical parameters for water network security. Procedia Engineering, 70, 1344-1352. https//doi.org/10.1016/j.proeng.2014.02.148 es_ES
dc.description.references Powell, J.C., Hallam, N.B., West, J.R., Forster, C.F., Simms, J. 2000. Factors which control bulk chlorine decay rates. Water Research, 34(1), 117-126. https//doi.org/10.1016/S0043-1354(99)00097-4 es_ES
dc.description.references Rodríguez, M.J., Sérodes, J.B. 2001. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Research, 35(6), 1572-1586. https//doi.org/10.1016/S0043-1354(00)00403-6 es_ES
dc.description.references Rodríguez, M.J., Sérodes, J.B., Levallois, P. 2004. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution systems. Water Research, 38, 4367-4382. https//doi.org/10.1016/j.watres.2004.08.018 es_ES
dc.description.references Rossman, L.A. 1993. EPANET – An advanced water quality modelling package for distribution systems. In: Proceedings of AWWA Annual Conference, San Antonio, Texas. es_ES
dc.description.references Rossman, L.A., Clark, R.M., Grayman, W.M. 1994. Modeling chlorine residuals in drinking-water distribution systems. Journal of Environmental Engineering, 120(4), 803-820. https//doi.org/10.1061/(ASCE)0733-9372(1994)120:4(803) es_ES
dc.description.references Rossman, L.A., Woo, H., Tryby, M., Shang, F., Janke, R., Haxton, T. 2020. EPANET 2.2 User Manual. US Environmental Protection Agency, Ohio, USA. es_ES
dc.description.references Rushing, J.C., Edwards, M. 2004. The role of temperature gradients in residential copper pipe corrosion. Corrosion Science, 46(8), 1883-1894. https//doi.org/10.1016/j.corsci.2003.11.001 es_ES
dc.description.references Sadiq, R., Rajani, B., Kleiner, Y. 2004. Probabilistic risk analysis of corrosion associated failures in cast iron water mains. Reliability Engineering and System Safety, 86, 1-10. https//doi.org/10.1016/j.ress.2003.12.007 es_ES
dc.description.references Schleich, C., Chan, S., Pullerits, K., Besmer, M.D., Paul, C.J., Radstrom, P., Keuchen, A. 2019. Mapping dynamics of bacterial communities in a full-scale drinking water distribution system using flow cytometry. Water, 11(10), 2137. https//doi.org/10.3390/w11102137 es_ES
dc.description.references Shang, F., Uber, J.G., Rossman, L.A. 2008. Modeling reaction and transport of multiple species in water distribution systems. Environmental Science and Technology, 42(3), 808-814. https//doi.org/10.1021/es072011z es_ES
dc.description.references Simoes, L.C., Simoes, M., Oliveira, R., Vieira, MJ. 2007. Potential of the adhesión of bacteria isolated from drinking water to materials. Journal of Basic Microbiology, 47, 174-183. https//doi.org/10.1002/jobm.200610224 es_ES
dc.description.references Speight, V., Kaslbeek, W.D., DiGiano, F.A. 2004. Randomized stratified sampling methodology for water quality in distribution systems. Journal of Water Resources Planning and Management, 130(4), 330-338. https//doi.org/10.1061/(ASCE)0733-9496(2004)130:4(330) es_ES
dc.description.references Speight, V., Uber, J., Grayman, W., Martel, K., Friedman, M., Singer, P., DiGiano, F. 2009. Probabilistic modelling framework for assessing water quality sampling programs. Water Research Foundation, Denver, USA. es_ES
dc.description.references Speight, V., Boxall, J. 2015. Current perspectives on disinfectant modelling. Procedia Engineering, 119, 434-441. https//doi.org/10.1016/j.proeng.2015.08.906 es_ES
dc.description.references Teixeira, A.P., Soares, C.G., Netto, A.T., Stefen, S.F. 2008. Reliability of pipelines with corrosion defects. International Journal of Pressure Vessels and Piping, 85, 228-237. https//doi.org/10.1016/j.ijpvp.2007.09.002 es_ES
dc.description.references Tokajian, S., Hashwa, F. 2003. Water quality problems associated with intermittent water supply. Water Science and Technology, 47(3), 229-234. https//doi.org/10.2166/wst.2003.0200 es_ES
dc.description.references Tsai, Y. 2005. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. Journal of Basic Microbiology, 45(6), 475-485. https//doi.org/10.1002/jobm.200510583 es_ES
dc.description.references Uber, J., Boxall, J. 2010. Multi-species network water quality modelling: current examples, future potential, and research needs. Proceedings in Tenth Annual International Conference on Computing and Control for the Water Industry, Sheffield, UK. es_ES
dc.description.references Van Summeren, J., Raterman, B., Vonk, E., Blokker, M., van Erp, J., Vries, D. 2015. Influence of temperature, network diagnostics and demographic factors in discoloration-related customer reports. Procedia Engineering, 119, 416-425. https//doi.org/10.1016/j.proeng.2015.08.903 es_ES
dc.description.references Vasconcelos, J.J., Rossman, L.A., Grayman, W.M., Boulos, P.F., Clark, R.M. 1997. Kinetics of chlorine decay. Journal American Water Works Association, 89(7), 54-65. https//doi.org/10.1002/j.1551-8833.1997.tb08259.x es_ES
dc.description.references Vidal, R., Martínez, F., Ayza, M. 1994. Aplicaciones de los modelos de calidad en la simulación de las redes de distribución de agua potable. Ingeniería del Agua, 1(3). https//doi.org/10.4995/ia.1994.2644 es_ES
dc.description.references Vrachimis, S.G., Eliades, D.G., Polycarpou, M.M. 2021. Calculating chlorine concentration bounds in water distribution networks: a backtracking uncertainty bounding approach. Water Resources Research, 57(5), e2020WR028684. https//doi.org/10.1029/2020WR028684 es_ES
dc.description.references Vreeburg, J.H.G., Boxall, J.B. 2007. Discolouration in potable water distribution systems: a review. Water Research, 41, 519-529. https//doi.org/10.1016/j.watres.2006.09.028 es_ES
dc.description.references WHO. 2011. Guidelines for drinking water quality, 4th Edition. World Health Organization, Geneva, Switzerland. es_ES
dc.description.references WHO. 2017. Guidelines for drinking water quality, 4th Edition – 1st Addendum. World Health Organization, Geneva, Switzerland. es_ES
dc.description.references Xu, X., Liu, S., Smith, K., Cui, Y., Wang, Z. 2020. An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. Journal of Cleaner Production, 276, 124079. https//doi.org/10.1016/j.jclepro.2020.124079 es_ES
dc.description.references Yang, X., Shang, C., Westerhoff, P. 2007. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Research, 41, 1193-1200. https//doi.org/10.1016/j.watres.2006.12.004 es_ES
dc.description.references Zlatanovic, L., van der Hoek, J.P., Vreeburg, J.H.G. 2017. An experimental study on the influence of water stagnation es_ES
dc.description.references and temperature change on water quality in a full-scale domestic drinking water system. Water Research, 123, 761-772, https://doi.org/10.1016/j.watres.2017.07.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem