Resumen:
|
[ES] El principal objetivo de este trabajo es desarrollar un método de producción acuícola con baja huella de carbono conocido como tecnología Biofloc (BFT). BFT cumple los principales objetivos de la acuicultura del futuro: ...[+]
[ES] El principal objetivo de este trabajo es desarrollar un método de producción acuícola con baja huella de carbono conocido como tecnología Biofloc (BFT). BFT cumple los principales objetivos de la acuicultura del futuro: la expansión debe mejorar la economía circular y la bioeconomía, reduciendo la presión sobre los recursos naturales y reduciendo la huella de carbono. TBF utiliza parte del carbono residual y los nutrientes para reciclarlos en biomasa microbiana y de microalgas, que luego son consumidos in situ por los animales producidos. La comunidad de bacterias y microalgas proporciona un alimento de alta calidad y permite reducir la cantidad de dieta artificial requerida en la acuicultura intensiva. Por otro lado, la conversión de nitrógeno en biomasa microbiana y de microalgas se convierte en BTF en un sistema eficaz de eliminación de TAN, que permite un recambio de agua nulo o mínimo. Adicionalmente, la mínima renovación de agua disminuye el riesgo de entrada de patógenos o brote de enfermedades. Por tanto, en el actual proyecto se describirán la metodología necesaria para desarrollar un biofloc que permita abrir al mercado con el langostino (Penaeus vannamei), lo que permitiría producir una especie de un gran valor nutricional a un bajo coste de producción.
[-]
[EN] The main objective of this work is the development of an empirical study on Biofloc technology
(BFT), an aquaculture production method that minimizes environmental impact. BFT meets the
principal goals of the ...[+]
[EN] The main objective of this work is the development of an empirical study on Biofloc technology
(BFT), an aquaculture production method that minimizes environmental impact. BFT meets the
principal goals of the aquaculture of the future, that is, it is a circular economy system and a
bioeconomy, as it is a closed system that reduces pressure on natural resources and minimizes the
carbon footprint.
In the BFT system, there will be a conversion of nitrogen into microbial biomass, so this effective
elimination of toxic nitrogen compounds, such as ammonium and nitrite, will allow zero or
minimal water replacement. Part of the microbial biomass produced will be consumed in situ by
the animals bred, which will allow the reduction of the amount of artificial diet required in
intensive aquaculture. This bacterial community, apart from consuming the nitrogen compounds,
will require an external intake of carbon for its proper development. Moreover, it will provide
other benefits such as improved biosafety in production thanks to the minimum water renewal,
which reduces the risk of pathogen entry or disease outbreaks, and the inhibitory action of
heterotrophic bacteria against the growth of pathogenic organisms. Energy consumption will also
be reduced since the continuous pumping of water into the biofilter will be avoided.
Therefore, the present project will describe the methodology necessary to develop a shrimp
(Penaeus vannamei) culture in a Biofloc system, which would allow the production of a species
of high nutritional value at a low production cost. For this purpose, two experiments have been
carried out with two different carbon sources, one experimental group supplemented with
molasses and the other with glucose, taking periodic measurements of temperature, salinity, pH,
dissolved oxygen, ammonium, nitrite, nitrate, phosphate, sedimentable solids and total suspended
solids to observe the evolution of water quality, and biweekly samplings to observe the growth of
the shrimp.
[-]
|