- -

Injection locking in an optomechanical coherent phonon source

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Injection locking in an optomechanical coherent phonon source

Mostrar el registro completo del ítem

Arregui, G.; Colombano, MF.; Maire, J.; Pitanti, A.; Capuj, NE.; Griol Barres, A.; Martínez, A.... (2021). Injection locking in an optomechanical coherent phonon source. Nanophotonics. 10(4):1319-1327. https://doi.org/10.1515/nanoph-2020-0592

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185443

Ficheros en el ítem

Metadatos del ítem

Título: Injection locking in an optomechanical coherent phonon source
Autor: Arregui, Guillermo Colombano, Martín F. Maire, Jeremie Pitanti, Alessandro Capuj, Néstor E. Griol Barres, Amadeu Martínez, Alejandro Sotomayor-Torres, Clivia M. Navarro-Urrios, Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Spontaneous locking of the phase of a coherent phonon source to an external reference is demonstrated in a deeply sideband-unresolved optomechanical system. The high-amplitude mechanical oscillations are driven by the ...[+]
Palabras clave: Injection locking , Nonlinear dynamics , Optomechanics , Self-sustained oscillator
Derechos de uso: Reconocimiento (by)
Fuente:
Nanophotonics. (issn: 2192-8606 )
DOI: 10.1515/nanoph-2020-0592
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/nanoph-2020-0592
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/AEI//SEV-2017-0706/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C22/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICIO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101743-B-I00/ES/SURFACE AND INTERFACE RESHAPED PHONON PROPAGATION AND PHONON COUPLING TO PHOTONS/
info:eu-repo/grantAgreement/EC/H2020/713450/EU
info:eu-repo/grantAgreement/MINECO//RYC-2014-15392/ES/RYC-2014-15392/
[-]
Agradecimientos:
This research was funded by EU FET Open project PHENOMEN (GA: 713450). ICN2 is supported by the Severo Ochoa program from the Spanish Research Agency (AEI, grant no. SEV-2017-0706) and by the CERCA Programme/Generalitat ...[+]
Tipo: Artículo

References

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014, https://doi.org/10.1103/revmodphys.86.1391.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, pp. 89–92, 2011, https://doi.org/10.1038/nature10461.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett., vol. 95, p. 033901, 2005, https://doi.org/10.1103/physrevlett.95.033901. [+]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014, https://doi.org/10.1103/revmodphys.86.1391.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, pp. 89–92, 2011, https://doi.org/10.1038/nature10461.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett., vol. 95, p. 033901, 2005, https://doi.org/10.1103/physrevlett.95.033901.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, p. 276, 2010, https://doi.org/10.1109/jstqe.2009.2031066.

E. Baldini, T. Palmieri, A. Dominguez, P. Ruello, A. Rubio, and M. Chergui, “Phonon-driven selective Modulation of exciton oscillator Strengths in anatase TiO2 Nanoparticles,” Nano Lett., vol. 18, p. 5007, 2018, https://doi.org/10.1021/acs.nanolett.8b01837.

A. Hernández-Mínguez, Y.-T. Liou, and P. V. Santos, “Interaction of surface acoustic waves with electronic excitations in graphene,” J. Phys. D Appl. Phys., vol. 51, p. 383001, 2018, https://doi.org/10.1088/1361-6463/aad593.

A. S. Kuznetsov, K. Biermann, and P. V. Santos, “Dynamic acousto-optical control of confined polariton condensates: from single traps to coupled lattices,” Phys. Rev. Res., vol. 1, p. 023030, 2019, https://doi.org/10.1103/physrevresearch.1.023030.

T. Czerniuk, C. Brüggemann, J. Tepper, et al.., “Lasing from active optomechanical resonators,” Nat. Commun., vol. 5, p. 4038, 2014, https://doi.org/10.1038/ncomms5038.

M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, “Spin pumping with coherent elastic waves,” Phys. Rev. Lett., vol. 108, p. 176601, 2012, https://doi.org/10.1103/physrevlett.108.176601.

R. Mankowsky, A. von Hoegen, M. Först, and A. Cavalleri, “Ultrafast reversal of the ferroelectric polarization,” Phys. Rev. Lett., vol. 118, p. 197601, 2017, https://doi.org/10.1103/physrevlett.118.197601.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics, vol. 10, p. 489, 2016, https://doi.org/10.1038/nphoton.2016.107.

W. Fu, Z. Shen, Y. Xu, et al.., “Phononic integrated circuitry and spin-orbit interaction of phonons,” Nat. Commun., vol. 10, p. 2743, 2019, https://doi.org/10.1038/s41467-019-10852-3.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett., vol. 94, p. 223902, 2005, https://doi.org/10.1103/physrevlett.94.223902.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett., vol. 104, p. 083901, 2010, https://doi.org/10.1103/physrevlett.104.083901.

I. Ghorbel, F. Swiadek, R. Zhu, et al.., “Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor,” APL Photonics, vol. 4, p. 116103, 2019, https://doi.org/10.1063/1.5121774.

L. Mercadé, L. L. Martín, A. Griol, D. Navarro-Urrios, and A. Martínez, “Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap,” Nanophotonics, vol. 9, p. 3535, 2020, https://doi.org/10.1515/nanoph-2020-0148.

C. Metzger, M. Ludwig, C. Neuenhahn, et al.., “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett., vol. 101, p. 133903, 2008, https://doi.org/10.1103/physrevlett.101.133903.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al.., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, p. 15733, 2015, https://doi.org/10.1038/srep15733.

D. Navarro-Urrios, J. Gomis-Bresco, F. Alzina, et al.., “Self-sustained coherent phonon generation in optomechanical cavities,” J. Opt., vol. 18, p. 094006, 2016, https://doi.org/10.1088/2040-8978/18/9/094006.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photonics Technol. Lett., vol. 20, no. 4, pp. 234–236, 2008, https://doi.org/10.1109/lpt.2007.912991.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun., vol. 7, p. 12311, 2016, https://doi.org/10.1038/ncomms12311.

X. Luan, Y. Huang, Y. Li, et al.., “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep., vol. 4, p. 6842, 2014, https://doi.org/10.1038/srep06842.

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Stability of resonant opto-mechanical oscillators,” Opt. Express, vol. 20, pp. 16234–16244, 2012, https://doi.org/10.1364/oe.20.016234.

M. Sansa, E. Sage, E. C. Bullard, et al.., “Frequency fluctuations in silicon nanoresonators,” Nat. Nanotechnol., vol. 11, pp. 552–558, 2016, https://doi.org/10.1038/nnano.2016.19.

C. M. Lin, T. T. Yen, V. V. Felmetsger, M. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications,” Appl. Phys. Lett., vol. 97, p. 083501, 2010, https://doi.org/10.1063/1.3481361.

B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch, “Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator,” Phys. Rev. A, vol. 51, p. 4211, 1995, https://doi.org/10.1103/physreva.51.4211.

V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE J. Quant. Electron., vol. 30, p. 1537, 1994, https://doi.org/10.1109/3.299485.

Y. Liu, P. Davis, Y. Takiguchi, T. Aida, S. Saito, and J.-M. Liu, “Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers,” IEEE J. Quant. Electron., vol. 39, p. 269, 2003. https://doi.org/10.1109/JQE.2002.807192.

Y.-Y. Liu, J. Stehlik, M. J. Gullans, J. M. Taylor, and J. R. Petta, “Injection locking of a semiconductor double-quantum-dot micromaser,” Phys. Rev. A, vol. 92, p. 053802, 2015, https://doi.org/10.1103/physreva.92.053802.

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid State Circ., vol. 39, p. 1415, 2004, https://doi.org/10.1109/jssc.2004.831608.

A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: A complete portrait based on injection locking,” IEEE J. Solid State Circ., vol. 42, p. 1916, 2007, https://doi.org/10.1109/jssc.2007.903047.

M. Abel, K. Ahnert, and S. Bergweiler, “Synchronization of sound sources,” Phys. Rev. Lett., vol. 103, p. 114301, 2009, https://doi.org/10.1103/physrevlett.103.114301.

M. J. Seitner, M. Abdi, A. Ridolfo, M. J. Hartmann, and E. M. Weig, “Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes,” Phys. Rev. Lett., vol. 118, p. 254301, 2017, https://doi.org/10.1103/physrevlett.118.254301.

D. Pu, R. Huan, and X. Wei, “Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization,” AIP Adv., vol. 7, p. 035204, 2017, https://doi.org/10.1063/1.4978222.

D. Marković, J. D. Pillet, E. Flurin, N. Roch, and B. Huard, “Injection locking and parametric locking in a superconducting circuit,” Phys. Rev. Appl., vol. 12, p. 024034, 2019. https://doi.org/10.1103/PhysRevApplied.12.024034.

J. F. Duffy and C. A. Czeisler, “Effect of light on human circadian physiology,” Sleep Med. Clin., vol. 4, pp. 165–177, 2009, https://doi.org/10.1016/j.jsmc.2009.01.004.

R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, pp. 351–357, 1946, https://doi.org/10.1109/jrproc.1946.229930.

M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett., vol. 93, p. 191115, 2008, https://doi.org/10.1063/1.3028024.

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-slave locking of optomechanical oscillators over a long distance,” Phys. Rev. Lett., vol. 114, p. 113602, 2015, https://doi.org/10.1103/physrevlett.114.113602.

K. Shlomi, D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, and E. Buks, “Synchronization in an optomechanical cavity,” Phys. Rev. E, vol. 91, p. 032910, 2015, https://doi.org/10.1103/physreve.91.032910.

A. Pitanti, J. M. Fink, A. H. Safavi-Naeini, et al.., “Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity,” Opt. Express, vol. 23, p. 3196, 2015, https://doi.org/10.1364/oe.23.003196.

C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica, vol. 4, pp. 1196–1204, 2017, https://doi.org/10.1364/optica.4.001196.

K. Huang and M. Hossein-Zadeh, “Injection locking of optomechanical oscillators via acoustic waves,” Opt. Express, vol. 26, p. 8275, 2018, https://doi.org/10.1364/oe.26.008275.

T. J. Johnson, M. Borselli, and Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express, vol. 14, p. 817, 2006, https://doi.org/10.1364/opex.14.000817.

M. F. Colombano, G. Arregui, N. E. Capuj, et al.., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 123, p. 017402, 2019, https://doi.org/10.1103/physrevlett.123.017402.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al.., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, p. 14965, 2017, https://doi.org/10.1038/ncomms14965.

T. Van Vaerenbergh, M. Fiers, J. Dambre, and P. Bienstman, “Simplified description of self-pulsation and excitability by thermal and free-carrier effects in semiconductor microcavities,” Phys. Rev. A, vol. 86, p. 063808, 2012, https://doi.org/10.1103/physreva.86.063808.

D. Navarro-Urrios, J. Gomis-Bresco, N. E. Capuj, et al.., “Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects,” J. Appl. Phys., vol. 116, p. 093506, 2014, https://doi.org/10.1063/1.4894623.

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed. New York, Springer, 1988.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge, UK, Cambridge University Press, 2003.

E. Amitai, N. Lörch, A. Nunnenkamp, S. Walter, and C. Bruder, “Synchronization of an optomechanical system to an external drive,” Phys. Rev. A, vol. 95, p. 053858, 2017, https://doi.org/10.1103/physreva.95.053858.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, vol. 13, p. 1725, 1996, https://doi.org/10.1364/josab.13.001725.

F. C. Hoppensteadt and E. M. Izhikevich, “Synchronization of MEMS resonators and mechanical neurocomputing,” IEEE Trans. Circ. Syst. I, Reg. Pap., vol. 48, p. 133, 2001, https://doi.org/10.1109/81.904877.

J. Maire, G. Arregui, N. E. Capuj, et al., “Optical modulation of coherent phonon emission in optomechanical cavities,” APL Photonics, vol. 3, p. 126102, 2018. https://doi.org/10.1063/1.5040061.

J. Zheng, Y. Li, N. Goldberg, et al.., “Feedback and harmonic locking of slot-type optomechanical oscillators to external low-noise reference clocks,” Appl. Phys. Lett., vol. 102, p. 141117, 2013, https://doi.org/10.1063/1.4801473.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem