- -

Injection locking in an optomechanical coherent phonon source

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Injection locking in an optomechanical coherent phonon source

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arregui, Guillermo es_ES
dc.contributor.author Colombano, Martín F. es_ES
dc.contributor.author Maire, Jeremie es_ES
dc.contributor.author Pitanti, Alessandro es_ES
dc.contributor.author Capuj, Néstor E. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Martínez, Alejandro es_ES
dc.contributor.author Sotomayor-Torres, Clivia M. es_ES
dc.contributor.author Navarro-Urrios, Daniel es_ES
dc.date.accessioned 2022-09-06T18:05:30Z
dc.date.available 2022-09-06T18:05:30Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 2192-8606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185443
dc.description.abstract [EN] Spontaneous locking of the phase of a coherent phonon source to an external reference is demonstrated in a deeply sideband-unresolved optomechanical system. The high-amplitude mechanical oscillations are driven by the anharmonic modulation of the radiation pressure force that result from an absorption-mediated free-carrier/temperature limit cycle, i.e., self-pulsing. Synchronization is observed when the pump laser driving the mechanical oscillator to a self-sustained state is modulated by a radiofrequency tone. We employ a pump-probe phonon detection scheme based on an independent optical cavity to observe only the mechanical oscillator dynamics. The lock range of the oscillation frequency, i.e., the Arnold tongue, is experimentally determined over a range of external reference strengths, evidencing the possibility to tune the oscillator frequency for a range up to 350 kHz. The stability of the coherent phonon source is evaluated via its phase noise, with a maximum achieved suppression of 44 dBc/Hz at 1 kHz offset for a 100 MHz mechanical resonator. Introducing a weak modulation in the excitation laser reveals as a further knob to trigger, control and stabilize the dynamical solutions of self-pulsing based optomechanical oscillators, thus enhancing their potential as acoustic wave sources in a single-layer silicon platform. es_ES
dc.description.sponsorship This research was funded by EU FET Open project PHENOMEN (GA: 713450). ICN2 is supported by the Severo Ochoa program from the Spanish Research Agency (AEI, grant no. SEV-2017-0706) and by the CERCA Programme/Generalitat de Catalunya. G. A. and C. M. S.-T. acknowledge the support from the Spanish MICINN project SIP (PGC2018-101743-B-I00). D. N. U., G. A. and M. F. C. gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a BIST studentship, and a Severo Ochoa studentship, respectively. D. N. U. acknowledges the funding through the Ministry of Science, Innovation and Universities (PGC2018-094490-B-C22). es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Nanophotonics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Injection locking es_ES
dc.subject Nonlinear dynamics es_ES
dc.subject Optomechanics es_ES
dc.subject Self-sustained oscillator es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Injection locking in an optomechanical coherent phonon source es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/nanoph-2020-0592 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//SEV-2017-0706/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C22/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICIO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101743-B-I00/ES/SURFACE AND INTERFACE RESHAPED PHONON PROPAGATION AND PHONON COUPLING TO PHOTONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713450/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2014-15392/ES/RYC-2014-15392/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Arregui, G.; Colombano, MF.; Maire, J.; Pitanti, A.; Capuj, NE.; Griol Barres, A.; Martínez, A.... (2021). Injection locking in an optomechanical coherent phonon source. Nanophotonics. 10(4):1319-1327. https://doi.org/10.1515/nanoph-2020-0592 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/nanoph-2020-0592 es_ES
dc.description.upvformatpinicio 1319 es_ES
dc.description.upvformatpfin 1327 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\440217 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014, https://doi.org/10.1103/revmodphys.86.1391. es_ES
dc.description.references J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, pp. 89–92, 2011, https://doi.org/10.1038/nature10461. es_ES
dc.description.references T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett., vol. 95, p. 033901, 2005, https://doi.org/10.1103/physrevlett.95.033901. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, p. 276, 2010, https://doi.org/10.1109/jstqe.2009.2031066. es_ES
dc.description.references E. Baldini, T. Palmieri, A. Dominguez, P. Ruello, A. Rubio, and M. Chergui, “Phonon-driven selective Modulation of exciton oscillator Strengths in anatase TiO2 Nanoparticles,” Nano Lett., vol. 18, p. 5007, 2018, https://doi.org/10.1021/acs.nanolett.8b01837. es_ES
dc.description.references A. Hernández-Mínguez, Y.-T. Liou, and P. V. Santos, “Interaction of surface acoustic waves with electronic excitations in graphene,” J. Phys. D Appl. Phys., vol. 51, p. 383001, 2018, https://doi.org/10.1088/1361-6463/aad593. es_ES
dc.description.references A. S. Kuznetsov, K. Biermann, and P. V. Santos, “Dynamic acousto-optical control of confined polariton condensates: from single traps to coupled lattices,” Phys. Rev. Res., vol. 1, p. 023030, 2019, https://doi.org/10.1103/physrevresearch.1.023030. es_ES
dc.description.references T. Czerniuk, C. Brüggemann, J. Tepper, et al.., “Lasing from active optomechanical resonators,” Nat. Commun., vol. 5, p. 4038, 2014, https://doi.org/10.1038/ncomms5038. es_ES
dc.description.references M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, “Spin pumping with coherent elastic waves,” Phys. Rev. Lett., vol. 108, p. 176601, 2012, https://doi.org/10.1103/physrevlett.108.176601. es_ES
dc.description.references R. Mankowsky, A. von Hoegen, M. Först, and A. Cavalleri, “Ultrafast reversal of the ferroelectric polarization,” Phys. Rev. Lett., vol. 118, p. 197601, 2017, https://doi.org/10.1103/physrevlett.118.197601. es_ES
dc.description.references K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics, vol. 10, p. 489, 2016, https://doi.org/10.1038/nphoton.2016.107. es_ES
dc.description.references W. Fu, Z. Shen, Y. Xu, et al.., “Phononic integrated circuitry and spin-orbit interaction of phonons,” Nat. Commun., vol. 10, p. 2743, 2019, https://doi.org/10.1038/s41467-019-10852-3. es_ES
dc.description.references T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett., vol. 94, p. 223902, 2005, https://doi.org/10.1103/physrevlett.94.223902. es_ES
dc.description.references I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett., vol. 104, p. 083901, 2010, https://doi.org/10.1103/physrevlett.104.083901. es_ES
dc.description.references I. Ghorbel, F. Swiadek, R. Zhu, et al.., “Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor,” APL Photonics, vol. 4, p. 116103, 2019, https://doi.org/10.1063/1.5121774. es_ES
dc.description.references L. Mercadé, L. L. Martín, A. Griol, D. Navarro-Urrios, and A. Martínez, “Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap,” Nanophotonics, vol. 9, p. 3535, 2020, https://doi.org/10.1515/nanoph-2020-0148. es_ES
dc.description.references C. Metzger, M. Ludwig, C. Neuenhahn, et al.., “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett., vol. 101, p. 133903, 2008, https://doi.org/10.1103/physrevlett.101.133903. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al.., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, p. 15733, 2015, https://doi.org/10.1038/srep15733. es_ES
dc.description.references D. Navarro-Urrios, J. Gomis-Bresco, F. Alzina, et al.., “Self-sustained coherent phonon generation in optomechanical cavities,” J. Opt., vol. 18, p. 094006, 2016, https://doi.org/10.1088/2040-8978/18/9/094006. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photonics Technol. Lett., vol. 20, no. 4, pp. 234–236, 2008, https://doi.org/10.1109/lpt.2007.912991. es_ES
dc.description.references W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun., vol. 7, p. 12311, 2016, https://doi.org/10.1038/ncomms12311. es_ES
dc.description.references X. Luan, Y. Huang, Y. Li, et al.., “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep., vol. 4, p. 6842, 2014, https://doi.org/10.1038/srep06842. es_ES
dc.description.references A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Stability of resonant opto-mechanical oscillators,” Opt. Express, vol. 20, pp. 16234–16244, 2012, https://doi.org/10.1364/oe.20.016234. es_ES
dc.description.references M. Sansa, E. Sage, E. C. Bullard, et al.., “Frequency fluctuations in silicon nanoresonators,” Nat. Nanotechnol., vol. 11, pp. 552–558, 2016, https://doi.org/10.1038/nnano.2016.19. es_ES
dc.description.references C. M. Lin, T. T. Yen, V. V. Felmetsger, M. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications,” Appl. Phys. Lett., vol. 97, p. 083501, 2010, https://doi.org/10.1063/1.3481361. es_ES
dc.description.references B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch, “Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator,” Phys. Rev. A, vol. 51, p. 4211, 1995, https://doi.org/10.1103/physreva.51.4211. es_ES
dc.description.references V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE J. Quant. Electron., vol. 30, p. 1537, 1994, https://doi.org/10.1109/3.299485. es_ES
dc.description.references Y. Liu, P. Davis, Y. Takiguchi, T. Aida, S. Saito, and J.-M. Liu, “Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers,” IEEE J. Quant. Electron., vol. 39, p. 269, 2003. https://doi.org/10.1109/JQE.2002.807192. es_ES
dc.description.references Y.-Y. Liu, J. Stehlik, M. J. Gullans, J. M. Taylor, and J. R. Petta, “Injection locking of a semiconductor double-quantum-dot micromaser,” Phys. Rev. A, vol. 92, p. 053802, 2015, https://doi.org/10.1103/physreva.92.053802. es_ES
dc.description.references B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid State Circ., vol. 39, p. 1415, 2004, https://doi.org/10.1109/jssc.2004.831608. es_ES
dc.description.references A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: A complete portrait based on injection locking,” IEEE J. Solid State Circ., vol. 42, p. 1916, 2007, https://doi.org/10.1109/jssc.2007.903047. es_ES
dc.description.references M. Abel, K. Ahnert, and S. Bergweiler, “Synchronization of sound sources,” Phys. Rev. Lett., vol. 103, p. 114301, 2009, https://doi.org/10.1103/physrevlett.103.114301. es_ES
dc.description.references M. J. Seitner, M. Abdi, A. Ridolfo, M. J. Hartmann, and E. M. Weig, “Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes,” Phys. Rev. Lett., vol. 118, p. 254301, 2017, https://doi.org/10.1103/physrevlett.118.254301. es_ES
dc.description.references D. Pu, R. Huan, and X. Wei, “Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization,” AIP Adv., vol. 7, p. 035204, 2017, https://doi.org/10.1063/1.4978222. es_ES
dc.description.references D. Marković, J. D. Pillet, E. Flurin, N. Roch, and B. Huard, “Injection locking and parametric locking in a superconducting circuit,” Phys. Rev. Appl., vol. 12, p. 024034, 2019. https://doi.org/10.1103/PhysRevApplied.12.024034. es_ES
dc.description.references J. F. Duffy and C. A. Czeisler, “Effect of light on human circadian physiology,” Sleep Med. Clin., vol. 4, pp. 165–177, 2009, https://doi.org/10.1016/j.jsmc.2009.01.004. es_ES
dc.description.references R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, pp. 351–357, 1946, https://doi.org/10.1109/jrproc.1946.229930. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett., vol. 93, p. 191115, 2008, https://doi.org/10.1063/1.3028024. es_ES
dc.description.references S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-slave locking of optomechanical oscillators over a long distance,” Phys. Rev. Lett., vol. 114, p. 113602, 2015, https://doi.org/10.1103/physrevlett.114.113602. es_ES
dc.description.references K. Shlomi, D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, and E. Buks, “Synchronization in an optomechanical cavity,” Phys. Rev. E, vol. 91, p. 032910, 2015, https://doi.org/10.1103/physreve.91.032910. es_ES
dc.description.references A. Pitanti, J. M. Fink, A. H. Safavi-Naeini, et al.., “Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity,” Opt. Express, vol. 23, p. 3196, 2015, https://doi.org/10.1364/oe.23.003196. es_ES
dc.description.references C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica, vol. 4, pp. 1196–1204, 2017, https://doi.org/10.1364/optica.4.001196. es_ES
dc.description.references K. Huang and M. Hossein-Zadeh, “Injection locking of optomechanical oscillators via acoustic waves,” Opt. Express, vol. 26, p. 8275, 2018, https://doi.org/10.1364/oe.26.008275. es_ES
dc.description.references T. J. Johnson, M. Borselli, and Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express, vol. 14, p. 817, 2006, https://doi.org/10.1364/opex.14.000817. es_ES
dc.description.references M. F. Colombano, G. Arregui, N. E. Capuj, et al.., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 123, p. 017402, 2019, https://doi.org/10.1103/physrevlett.123.017402. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al.., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, p. 14965, 2017, https://doi.org/10.1038/ncomms14965. es_ES
dc.description.references T. Van Vaerenbergh, M. Fiers, J. Dambre, and P. Bienstman, “Simplified description of self-pulsation and excitability by thermal and free-carrier effects in semiconductor microcavities,” Phys. Rev. A, vol. 86, p. 063808, 2012, https://doi.org/10.1103/physreva.86.063808. es_ES
dc.description.references D. Navarro-Urrios, J. Gomis-Bresco, N. E. Capuj, et al.., “Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects,” J. Appl. Phys., vol. 116, p. 093506, 2014, https://doi.org/10.1063/1.4894623. es_ES
dc.description.references V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed. New York, Springer, 1988. es_ES
dc.description.references A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge, UK, Cambridge University Press, 2003. es_ES
dc.description.references E. Amitai, N. Lörch, A. Nunnenkamp, S. Walter, and C. Bruder, “Synchronization of an optomechanical system to an external drive,” Phys. Rev. A, vol. 95, p. 053858, 2017, https://doi.org/10.1103/physreva.95.053858. es_ES
dc.description.references X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, vol. 13, p. 1725, 1996, https://doi.org/10.1364/josab.13.001725. es_ES
dc.description.references F. C. Hoppensteadt and E. M. Izhikevich, “Synchronization of MEMS resonators and mechanical neurocomputing,” IEEE Trans. Circ. Syst. I, Reg. Pap., vol. 48, p. 133, 2001, https://doi.org/10.1109/81.904877. es_ES
dc.description.references J. Maire, G. Arregui, N. E. Capuj, et al., “Optical modulation of coherent phonon emission in optomechanical cavities,” APL Photonics, vol. 3, p. 126102, 2018. https://doi.org/10.1063/1.5040061. es_ES
dc.description.references J. Zheng, Y. Li, N. Goldberg, et al.., “Feedback and harmonic locking of slot-type optomechanical oscillators to external low-noise reference clocks,” Appl. Phys. Lett., vol. 102, p. 141117, 2013, https://doi.org/10.1063/1.4801473. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem