Álvarez-Álvarez, E., Rico-Secades, M., Corominas, E.L., Huerta-Medina, N., Soler-Guitarta, J. 2018. Design and control strategies for a modular hydroKinetic smart grid. International Journal of Electrical Power and Energy Systems, 95, 137–145. https://doi.org/10.1016/j.ijepes.2017.08.019
Asr, M.T., Nezhad, E.Z., Mustapha, F., Wiriadidjaja, S. 2016. Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy, 112, 528–537. https://doi.org/10.1016/j.energy.2016.06.059
Betz, A. 1920. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwes. 26, 307-309.
[+]
Álvarez-Álvarez, E., Rico-Secades, M., Corominas, E.L., Huerta-Medina, N., Soler-Guitarta, J. 2018. Design and control strategies for a modular hydroKinetic smart grid. International Journal of Electrical Power and Energy Systems, 95, 137–145. https://doi.org/10.1016/j.ijepes.2017.08.019
Asr, M.T., Nezhad, E.Z., Mustapha, F., Wiriadidjaja, S. 2016. Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy, 112, 528–537. https://doi.org/10.1016/j.energy.2016.06.059
Betz, A. 1920. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwes. 26, 307-309.
Bachant, P., Wosnik, M. 2015. Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318–325. https://doi.org/10.1016/j.renene.2014.07.049
Brun, P., Terme, L., Barillier, A. 2013. Paimpol-Bréhat: Development of the First Tidal Array in France. In: Marine Renewable Energy Handbook. John Wiley & Sons, Inc., Hoboken, NJ USA, pp 279–310. https://doi.org/10.1002/9781118603185.ch9
Dhadwad, A., Balekar, A., Nagrale, P. 2014. Literature Review on Blade Design of Hydro-Microturbines. International Journal of Scientific & Engineering Research, 5, 72–75.
Divakaran, U., Ramesh, A., Mohammad, A., Velamati, R.K. Effect of helix angle on the performance of helical vertical axis wind turbine. Energies 2021;14:1–24. https://doi.org/10.3390/en14020393.
Espina-Valdés, R., Fernández-Jiménez, A., Fernández-Francos, J., Blanco-Marigorta, E., Álvarez-Álvarez, E. 2020. Small cross-flow turbine:Design and testing in high blockage conditions. Energy Conversion Management, 213, 112863. https://doi.org/10.1016/J.ENCONMAN.2020.112863
Gharib, A., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. 2021. Design and characterization of a verticalaxis micro tidal turbine for low velocity scenarios. Energy Conversion Management, 237, 114144. https://doi.org/10.1016/j.enconman.2021.114144
Golecha, K., Eldho, T.I., Prabhu, S.V. 2012. Study on the interaction between two hydrokinetic Savonius turbines. I International Journal of Rotating Machinery, 2012, 581658. https://doi.org/10.1155/2012/581658
Goundar, J.N., Ahmed, M.R. 2014. Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14-22. https://doi.org/10.1016/j.renene.2013.06.036
Houlsby, G.T.T., Draper, S., Oldfield, M.L.G. 2008. Application of Linear Momentum Actuator Disc Theory to Open Channel Flow by. Rep no OUEL 1–23.
Jayaram, V., Bavanish, B. 2021. A brief review on the Gorlov helical turbine and its possible impact on power generation in India. Materials Today: Proceedings, 37, 3343–3351. https://doi.org/10.1016/j.matpr.2020.09.203
Kinsey, T., Dumas, G. 2017. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renew Energy, 103, 239–254. https://doi.org/10.1016/J.RENENE.2016.11.021
Kolekar, N., Banerjee, A. 2015. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148, 121–133. https://doi.org/10.1016/j.apenergy.2015.03.052
Lago, L.I., Ponta, F.L., Chen, L. 2010. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14, 287–296. https://doi.org/10.1016/j.esd.2010.09.004
Marsh, P., Ranmuthugala, D., Penesis, I., Thomas, G. 2015. Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew Energy, 81, 926–935. https://doi.org/10.1016/j.renene.2015.03.083.
Patel, V., Eldho, T.I, Prabhu, S.V. 2019. Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel. Renewable Energy, 131, 1300–1317. https://doi.org/10.1016/j.renene.2018.08.027
Ross, H., Polagye, B. 2020. An experimental assessment of analytical blockage corrections for turbines. Renewable Energy, 152, 1328-1341. https://doi.org/10.1016/j.renene.2020.01.135
dos Santos, I.F.S. Ramírez-Camacho, R.G., Tiago-Filho, G.L., Barkett-Botan, A.C., Amoeiro-Vinent, B. 2019. Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648–662. https://doi.org/10.1016/j.renene.2019.05.018
[-]