- -

Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Araneda-Cabrera, Ronnie J. es_ES
dc.contributor.author Bermúdez, María es_ES
dc.contributor.author Puertas, Jerónimo es_ES
dc.contributor.author Penas, Víctor es_ES
dc.coverage.spatial east=35.529562; north=-18.665695; name=Mozambique es_ES
dc.date.accessioned 2022-09-07T08:08:43Z
dc.date.available 2022-09-07T08:08:43Z
dc.date.issued 2022-07-29
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/185471
dc.description.abstract [EN] Drought is a natural phenomenon that affects socio-economic and environmental systems, so monitoring it is crucial to minimize its impacts. In Mozambique, in southern Africa, 70% of the population depends on agriculture for subsistence, and water for this activity is mostly extracted directly from rivers. In this paper we have compared several univariate and multivariate drought indices calculated with variables from satellite databases to define one that best fits the hydrological drought conditions in the watersheds of the Southern ARA of Mozambique. The hydrological conditions were defined using the Standardized Runoff Index 3-month cumulative (SRI-3). Using cross-correlations and linear and non-linear regression models, it was found that the Standardized Precipitation Index 3-month cumulative (SPI-3) could be used to monitor hydrological droughts in this region in (near) real time. es_ES
dc.description.abstract [ES] La sequía es un fenómeno natural que afecta a los sistemas socioeconómicos y medioambientales por lo que su monitorización es clave para minimizar sus impactos. En Mozambique, en el sur de África el 70% de la población depende la agricultura para sobrevivir, y el agua para esta actividad se extrae mayoritariamente directo de los ríos. En este trabajo hemos comparado varios índices de sequía univariables y multivariables calculados con variables provenientes de bases de datos satelitales para definir uno que mejor se ajuste a las condiciones de sequía hidrológica en las cuencas hidrográficas del ARA Sur de Mozambique. Las condiciones hidrológicas se definieron con el Índice Estandarizado de Escorrentía acumulado 3 meses (SRI-3). Mediante relaciones cruzadas y modelos de regresión lineales y no lineales se encontró que el Índice Estandarizado de Precipitación acumulado 3 meses (SPI-3) podría usarse para monitorizar las sequías hidrológicas en esta región en tiempo (casi) real. es_ES
dc.description.sponsorship Este trabajo fue realizado en el marco del proyecto AquaMoz-Secara Fase 2, financiado por Augas de Galicia y la Dirección Xeral de Relacións Exteriores y con la Unión Europea de la Xunta de Galicia. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Hydrological droughts es_ES
dc.subject Remote sensing es_ES
dc.subject Mozambique es_ES
dc.subject Southern ARA es_ES
dc.subject SPI es_ES
dc.subject Regression models es_ES
dc.subject Sequías hidrológicas es_ES
dc.subject Teledetección es_ES
dc.subject ARA Sur es_ES
dc.subject Modelos de regresión es_ES
dc.title Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique es_ES
dc.title.alternative Comparison of univariate and multivariate drought indices based on satellite data for hydrological drought monitoring in the Southern ARA, Mozambique es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2022.18037
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Araneda-Cabrera, RJ.; Bermúdez, M.; Puertas, J.; Penas, V. (2022). Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique. Ingeniería del Agua. 26(3):217-229. https://doi.org/10.4995/ia.2022.18037 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2022.18037 es_ES
dc.description.upvformatpinicio 217 es_ES
dc.description.upvformatpfin 229 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\18037 es_ES
dc.contributor.funder Augas de Galicia es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.description.references Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191 es_ES
dc.description.references AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., Hain, C.R. 2015. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys., 53, 452–480. https://doi.org/10.1002/2014RG000456 es_ES
dc.description.references Agutu, N.O., Awange, J.L., Zerihun, A., Ndehedehe, C.E., Kuhn, M., Fukuda, Y. 2017. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ., 194, 287–302. https://doi.org/10.1016/j.rse.2017.03.041 es_ES
dc.description.references Araneda-Cabrera, R.J., Bermudez, M., Puertas, J. 2021a. Índices de precipitación y vegetación estandarizados bivariables para evaluar y monitorear sequías agrícolas. Rev. Hidrolatinoamericana, 5, 27–30. es_ES
dc.description.references Araneda-Cabrera, R.J., Bermudez, M., Puertas, J. 2021b. Revealing the spatio-temporal characteristics of drought in Mozambique and their relationship with large-scale climate variability. J. Hydrol. Reg. Stud., 38, 100938. https://doi.org/10.1016/j.ejrh.2021.100938 es_ES
dc.description.references Araneda-Cabrera, R.J., Bermúdez, M., Puertas, J. 2020. Unified framework for drought monitoring and assessment in a transboundary river basin, in: River Flow 2020; Uijttewaal, W, Franca M, Valero D, Chavarrias V, Arbós C, Schielen R and Crosato A, Eds. Taylor & Francis Group, London, pp. 1081–1086. https://doi.org/10.1201/b22619 es_ES
dc.description.references Conselho de Ministros, 2020. BR No 160 de 20.08.20, Boletim da República - I Serie. Publicação oficial da República de Moçambique. Maputo, Mozambique. https://www.inm.gov.mz/pt-br/content/br-n%C2%BA-160-de-200820-boletim-darep%C3%BAblica-i-serie. es_ES
dc.description.references Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., Ceccato, P. 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc., 144(51), 292–312. https://doi.org/10.1002/qj.3244 es_ES
dc.description.references Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., Van Oevelen, P., Robock, A., Jackson, T. 2011. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698. https://doi.org/10.5194/hess-15-1675-2011 es_ES
dc.description.references Easterling, D.R. 2013. Global Data Sets for Analysis of Climate Extremes., in: Water Science and Technology Library (Ed.), Global Data Sets for Analysis of Climate Extremes. Springer, Dordrecht, pp. 347–361. https://doi.org/10.1007/978-94-007-4479-0_12 es_ES
dc.description.references Eriksen, S., Silva, J.A. 2009. The vulnerability context of a savanna area in Mozambique: household drought coping strategies and responses to economic change. Environ. Sci. Policy, 12, 33–52. https://doi.org/10.1016/j.envsci.2008.10.007 es_ES
dc.description.references Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J. 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data 2, 1–21. https://doi.org/10.1038/sdata.2015.66 es_ES
dc.description.references Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., Verdin, A.P. 2014. A Quasi-Global Precipitation Time Series for Drought Monitoring. U.S. Geol. Surv. Data Ser. 832, 4. es_ES
dc.description.references Golnaraghi, M., Etienne, C., Sapir, D.G., Below, R. 2014. Atlas of Mortality and Economic Losses From Weather, Climate and Water Extremes (1970-2012), WMO-No. 1123, World Meteorological Organization, Geneva, Switzerland. https://www.preventionweb.net/files/38413_wmo1123atlas120614.pdf. es_ES
dc.description.references Gringorten, I.I. 1963. A Plotting Rule for Extreme Probability Paper. J. Geophys. Res., 68, 813–814. https://doi.org/doi:10.1029/JZ068i003p00813 es_ES
dc.description.references Guttman, N.B. 1998. Comparing the palmer drought index and the standardized precipitation index. J. Am. Water Resour. Assoc. 34, 113–121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x es_ES
dc.description.references Guttman, N.B. 1999. Accepting the Standardized Precipitation Index: a Calculation Algorithm. JAWRA J. Am. Water Resour. Assoc., 35, 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x es_ES
dc.description.references Hagenlocher, M., Meza, Isabel, Carl Anderson, Annika Min, Fabrice G. Renaud, Y., Walz, S.S., Sebesvari, Z. 2019. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett., 4. https://doi.org/10.1088/1748-9326/ab225d es_ES
dc.description.references Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. 1998. Multivariate Data Analysis, 7th ed, Pearson. Prentice Hall, Englewood Cliffs, New Jersey, USA. es_ES
dc.description.references Hao, Z., AghaKouchak, A. 2013. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour., 57, 12–18. https://doi.org/10.1016/j.advwatres.2013.03.009 es_ES
dc.description.references IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA. es_ES
dc.description.references Kogan, F.N. 1995. Application of vegetation index and brightness temperature for drought detection. Adv. Sp. Res., 15, 91–100. https://doi.org/10.1016/0273-1177(95)00079-T es_ES
dc.description.references Kumar, N.M., Murthy, C.S., Sesha Sai, M.V.R., Roy, P.S. 2009. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl., 16, 381–389. https://doi.org/10.1002/met.136 es_ES
dc.description.references McKee, T.B., Doesken, N.J., Kleist, J. 1993. The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology. American Meteorological Society, Anaheim, CA. es_ES
dc.description.references Ministério da Agricultura e Segurança Alimentar, 2015. Anuário de Estatísticas Agrárias 2015. es_ES
dc.description.references Mo, K.C., Lettenmaier, D.P. 2013. Objective Drought Classification Using Multiple Land Surface Models. J. Hydrometeorol., 15, 990–1010. https://doi.org/10.1175/jhm-d-13-071.1 es_ES
dc.description.references MunichRE, 2018. NatCatSERVICE. es_ES
dc.description.references Niemeyer, S. 2008. New drought indices. Options Méditerranéennes, 80, 267–274. es_ES
dc.description.references Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., Vogt, J. 2012. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci., 12, 3519–3531. https://doi.org/10.5194/nhess-12-3519-2012 es_ES
dc.description.references Shukla, S., Wood, A.W. 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, 1–7. https://doi.org/10.1029/2007GL032487 es_ES
dc.description.references Svodova, M., Funchs, B.A., Integrated Drought Management Programme (IDMP), 2016. Handbook of drought indicators and indices, Drought Mitigation Center Faculty Publications. 117. https://doi.org/10.1007/s00704-016-1984-6 es_ES
dc.description.references Vicente-Serrano, S.M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., El Kenawy, A., López-Moreno, J.I., Nieto, R., Ayenew, T., Konte, D., Ardö, J., Pegram, G.G.S. 2012. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr., 34, 471–486. https://doi.org/10.1016/j.apgeog.2012.02.001 es_ES
dc.description.references Wilhite, D.A., Glantz, M.H. 1985. Understanding: The drought phenomenon: The role of definitions. Water Int., 10, 111–120. https://doi.org/10.1080/02508068508686328 es_ES
dc.description.references World Meteorological Organization and Global Water Partnership, 2016. Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, Geneva. es_ES
dc.description.references Wu, J., Chen, X., Yao, H., Gao, L., Chen, Y., Liu, M. 2017. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol., 551, 495–507. https://doi.org/10.1016/j.jhydrol.2017.06.029 es_ES
dc.description.references Yue, S., Ouarda, T.B.M.J., Bobée, B., Legendre, P., Bruneau, P. 1999. The Gumbel mixed model for flood frequency analysis. J. Hydrol., 226, 88–100. https://doi.org/10.1016/S0022-1694(99)00168-7 es_ES
dc.description.references Zhang, F., Zhou, G., Nilsson, C. 2013. Remote estimation of the fraction of absorbed photosynthetically active radiation for a maize canopy in Northeast China. J. Plant Ecol., 8, 429–435. https://doi.org/10.1093/jpe/rtu027 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem