- -

Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique

Mostrar el registro completo del ítem

Araneda-Cabrera, RJ.; Bermúdez, M.; Puertas, J.; Penas, V. (2022). Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique. Ingeniería del Agua. 26(3):217-229. https://doi.org/10.4995/ia.2022.18037

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185471

Ficheros en el ítem

Metadatos del ítem

Título: Comparación de índices de sequía univariables y multivariables basados en datos satelitales para la monitorización de sequías hidrológicas en el ARA Sur, Mozambique
Otro titulo: Comparison of univariate and multivariate drought indices based on satellite data for hydrological drought monitoring in the Southern ARA, Mozambique
Autor: Araneda-Cabrera, Ronnie J. Bermúdez, María Puertas, Jerónimo Penas, Víctor
Fecha difusión:
Resumen:
[EN] Drought is a natural phenomenon that affects socio-economic and environmental systems, so monitoring it is crucial to minimize its impacts. In Mozambique, in southern Africa, 70% of the population depends on agriculture ...[+]


[ES] La sequía es un fenómeno natural que afecta a los sistemas socioeconómicos y medioambientales por lo que su monitorización es clave para minimizar sus impactos. En Mozambique, en el sur de África el 70% de la población ...[+]
Palabras clave: Hydrological droughts , Remote sensing , Mozambique , Southern ARA , SPI , Regression models , Sequías hidrológicas , Teledetección , ARA Sur , Modelos de regresión
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2022.18037
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2022.18037
Agradecimientos:
Este trabajo fue realizado en el marco del proyecto AquaMoz-Secara Fase 2, financiado por Augas de Galicia y la Dirección Xeral de Relacións Exteriores y con la Unión Europea de la Xunta de Galicia.
Tipo: Artículo

Localización


 

References

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191

AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., Hain, C.R. 2015. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys., 53, 452–480. https://doi.org/10.1002/2014RG000456

Agutu, N.O., Awange, J.L., Zerihun, A., Ndehedehe, C.E., Kuhn, M., Fukuda, Y. 2017. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ., 194, 287–302. https://doi.org/10.1016/j.rse.2017.03.041 [+]
Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191

AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., Hain, C.R. 2015. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys., 53, 452–480. https://doi.org/10.1002/2014RG000456

Agutu, N.O., Awange, J.L., Zerihun, A., Ndehedehe, C.E., Kuhn, M., Fukuda, Y. 2017. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ., 194, 287–302. https://doi.org/10.1016/j.rse.2017.03.041

Araneda-Cabrera, R.J., Bermudez, M., Puertas, J. 2021a. Índices de precipitación y vegetación estandarizados bivariables para evaluar y monitorear sequías agrícolas. Rev. Hidrolatinoamericana, 5, 27–30.

Araneda-Cabrera, R.J., Bermudez, M., Puertas, J. 2021b. Revealing the spatio-temporal characteristics of drought in Mozambique and their relationship with large-scale climate variability. J. Hydrol. Reg. Stud., 38, 100938. https://doi.org/10.1016/j.ejrh.2021.100938

Araneda-Cabrera, R.J., Bermúdez, M., Puertas, J. 2020. Unified framework for drought monitoring and assessment in a transboundary river basin, in: River Flow 2020; Uijttewaal, W, Franca M, Valero D, Chavarrias V, Arbós C, Schielen R and Crosato A, Eds. Taylor & Francis Group, London, pp. 1081–1086. https://doi.org/10.1201/b22619

Conselho de Ministros, 2020. BR No 160 de 20.08.20, Boletim da República - I Serie. Publicação oficial da República de Moçambique. Maputo, Mozambique. https://www.inm.gov.mz/pt-br/content/br-n%C2%BA-160-de-200820-boletim-darep%C3%BAblica-i-serie.

Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., Ceccato, P. 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc., 144(51), 292–312. https://doi.org/10.1002/qj.3244

Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., Van Oevelen, P., Robock, A., Jackson, T. 2011. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698. https://doi.org/10.5194/hess-15-1675-2011

Easterling, D.R. 2013. Global Data Sets for Analysis of Climate Extremes., in: Water Science and Technology Library (Ed.), Global Data Sets for Analysis of Climate Extremes. Springer, Dordrecht, pp. 347–361. https://doi.org/10.1007/978-94-007-4479-0_12

Eriksen, S., Silva, J.A. 2009. The vulnerability context of a savanna area in Mozambique: household drought coping strategies and responses to economic change. Environ. Sci. Policy, 12, 33–52. https://doi.org/10.1016/j.envsci.2008.10.007

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J. 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data 2, 1–21. https://doi.org/10.1038/sdata.2015.66

Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., Verdin, A.P. 2014. A Quasi-Global Precipitation Time Series for Drought Monitoring. U.S. Geol. Surv. Data Ser. 832, 4.

Golnaraghi, M., Etienne, C., Sapir, D.G., Below, R. 2014. Atlas of Mortality and Economic Losses From Weather, Climate and Water Extremes (1970-2012), WMO-No. 1123, World Meteorological Organization, Geneva, Switzerland. https://www.preventionweb.net/files/38413_wmo1123atlas120614.pdf.

Gringorten, I.I. 1963. A Plotting Rule for Extreme Probability Paper. J. Geophys. Res., 68, 813–814. https://doi.org/doi:10.1029/JZ068i003p00813

Guttman, N.B. 1998. Comparing the palmer drought index and the standardized precipitation index. J. Am. Water Resour. Assoc. 34, 113–121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x

Guttman, N.B. 1999. Accepting the Standardized Precipitation Index: a Calculation Algorithm. JAWRA J. Am. Water Resour. Assoc., 35, 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x

Hagenlocher, M., Meza, Isabel, Carl Anderson, Annika Min, Fabrice G. Renaud, Y., Walz, S.S., Sebesvari, Z. 2019. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett., 4. https://doi.org/10.1088/1748-9326/ab225d

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. 1998. Multivariate Data Analysis, 7th ed, Pearson. Prentice Hall, Englewood Cliffs, New Jersey, USA.

Hao, Z., AghaKouchak, A. 2013. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour., 57, 12–18. https://doi.org/10.1016/j.advwatres.2013.03.009

IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA.

Kogan, F.N. 1995. Application of vegetation index and brightness temperature for drought detection. Adv. Sp. Res., 15, 91–100. https://doi.org/10.1016/0273-1177(95)00079-T

Kumar, N.M., Murthy, C.S., Sesha Sai, M.V.R., Roy, P.S. 2009. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl., 16, 381–389. https://doi.org/10.1002/met.136

McKee, T.B., Doesken, N.J., Kleist, J. 1993. The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology. American Meteorological Society, Anaheim, CA.

Ministério da Agricultura e Segurança Alimentar, 2015. Anuário de Estatísticas Agrárias 2015.

Mo, K.C., Lettenmaier, D.P. 2013. Objective Drought Classification Using Multiple Land Surface Models. J. Hydrometeorol., 15, 990–1010. https://doi.org/10.1175/jhm-d-13-071.1

MunichRE, 2018. NatCatSERVICE.

Niemeyer, S. 2008. New drought indices. Options Méditerranéennes, 80, 267–274.

Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., Vogt, J. 2012. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci., 12, 3519–3531. https://doi.org/10.5194/nhess-12-3519-2012

Shukla, S., Wood, A.W. 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, 1–7. https://doi.org/10.1029/2007GL032487

Svodova, M., Funchs, B.A., Integrated Drought Management Programme (IDMP), 2016. Handbook of drought indicators and indices, Drought Mitigation Center Faculty Publications. 117. https://doi.org/10.1007/s00704-016-1984-6

Vicente-Serrano, S.M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., El Kenawy, A., López-Moreno, J.I., Nieto, R., Ayenew, T., Konte, D., Ardö, J., Pegram, G.G.S. 2012. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr., 34, 471–486. https://doi.org/10.1016/j.apgeog.2012.02.001

Wilhite, D.A., Glantz, M.H. 1985. Understanding: The drought phenomenon: The role of definitions. Water Int., 10, 111–120. https://doi.org/10.1080/02508068508686328

World Meteorological Organization and Global Water Partnership, 2016. Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, Geneva.

Wu, J., Chen, X., Yao, H., Gao, L., Chen, Y., Liu, M. 2017. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol., 551, 495–507. https://doi.org/10.1016/j.jhydrol.2017.06.029

Yue, S., Ouarda, T.B.M.J., Bobée, B., Legendre, P., Bruneau, P. 1999. The Gumbel mixed model for flood frequency analysis. J. Hydrol., 226, 88–100. https://doi.org/10.1016/S0022-1694(99)00168-7

Zhang, F., Zhou, G., Nilsson, C. 2013. Remote estimation of the fraction of absorbed photosynthetically active radiation for a maize canopy in Northeast China. J. Plant Ecol., 8, 429–435. https://doi.org/10.1093/jpe/rtu027

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem