- -

Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iglesias Martínez, Miguel Enrique es_ES
dc.contributor.author Antonino-Daviu, Jose A. es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Dunai, Larisa es_ES
dc.date.accessioned 2022-09-07T18:02:40Z
dc.date.available 2022-09-07T18:02:40Z
dc.date.issued 2021-11 es_ES
dc.identifier.issn 0093-9994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185585
dc.description (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Wound rotor induction motors are used in a certain number of industrial applications due to their interesting advantages, such as the possibility of inserting external rheostats in series with the rotor winding to enhance the torque characteristics under starting and to decrease the high inrush currents. However, the more complex structure of the rotor winding, compared to cage induction motors, is a source for potential maintenance problems. In this regard, several anomalies can lead to the occurrence of asymmetries in the rotor winding that may yield terrible repercussions for the machine¿s integrity. Therefore, monitoring the levels of asymmetry in the rotor winding is of paramount importance to ensure the correct operation of the motor. This work proposes the use of Bicoherence of the stray flux signal, as an indicator to obtain an automatic classification of the rotor winding condition. For this, the Fuzzy C-Means machine learning algorithm is used, which starts with the Bicoherence calculation and generates the different clusters for grouping and classification, according to the level of winding asymmetry. In addition, an analysis regarding the influence of the flux sensor position on the automatic classification and the failure detection is carried out. The results are highly satisfactory and prove the potential of the method for its future incorporation in autonomous condition monitoring systems that can be satisfactorily applied to determine the health of these machines. es_ES
dc.description.sponsorship This work was supported in part by Generalitat Valenciana, Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital, (project AICO/019/224) and in part by MEC under Project MTM2016-75963-P. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industry Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fault diagnosis es_ES
dc.subject Asymmetries es_ES
dc.subject Bicoherence es_ES
dc.subject Fuzzy C-Means es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TIA.2021.3108413 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P//Dinámica de operadores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Iglesias Martínez, ME.; Antonino-Daviu, JA.; Fernández De Córdoba, P.; Conejero, JA.; Dunai, L. (2021). Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals. IEEE Transactions on Industry Applications. 57(6):5876-5886. https://doi.org/10.1109/TIA.2021.3108413 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TIA.2021.3108413 es_ES
dc.description.upvformatpinicio 5876 es_ES
dc.description.upvformatpfin 5886 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\444481 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem